Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding

被引:7
作者
Ota, Azumi [1 ]
Enoki, Yasuald [1 ]
Yamamoto, Noritaka [1 ]
Sawai, Maki [1 ]
Sakurai, Hiroshi [1 ]
机构
[1] Kanazawa Univ, Grad Sch Med Sci, Div Hlth Sci, Kanazawa, Ishikawa 9200942, Japan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS | 2013年 / 1829卷 / 09期
关键词
Heat shock transcription factor (HSF); Protein-DNA interaction; Intramolecular interaction; Oligomer formation; FACTOR FAMILY; FACTOR-I; HUMAN HSF1; STRESS; ACTIVATION; RECOGNITION; ADAPTATION; EXPRESSION; REPRESSION; COMPLEX;
D O I
10.1016/j.bbagrm.2013.03.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heat shock transcription factor (HSF) regulates the expression of genes encoding molecular chaperones and stress-responsive proteins. Conversion of HSF from a monomer to a homotrimer or heterotrimer is essential for its binding to heat shock elements (HSEs) comprised of inverted repeats of the pentamer nGAAn. Here, we constructed various human HSF1 derivatives and analyzed their transcriptional activity through the continuously and discontinuously arranged nGAAn units. We identified a short stretch of amino acids that inhibits the activation ability of HSF1, especially through discontinuous HSEs. This stretch is conserved in HSFs of various organisms, interacts with the hydrophobic repeat regions that mediate HSF oligomerization, and impedes homotrimer formation and DNA binding. This conserved domain plays an important role in maintaining HSF in an inactive monomeric form.(c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:930 / 936
页数:7
相关论文
共 25 条
  • [11] HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers
    Mendillo, Marc L.
    Santagata, Sandro
    Koeva, Martina
    Bell, George W.
    Hu, Rong
    Tamimi, Rulla M.
    Fraenkel, Ernest
    Ince, Tan A.
    Whitesell, Luke
    Lindquist, Susan
    [J]. CELL, 2012, 150 (03) : 549 - 562
  • [12] HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator
    Nakai, A
    Tanabe, M
    Kawazoe, Y
    Inazawa, J
    Morimoto, RI
    Nagata, K
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (01) : 469 - 481
  • [13] Newton EM, 1996, MOL CELL BIOL, V16, P839
  • [14] Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival
    Page, Todd J.
    Sikder, Devanjan
    Yang, Longlong
    Pluta, Linda
    Wolfinger, Russell D.
    Kodadek, Thomas
    Thomas, Russell S.
    [J]. MOLECULAR BIOSYSTEMS, 2006, 2 (12) : 627 - 639
  • [15] Råbergh CMI, 2000, J EXP BIOL, V203, P1817
  • [16] REGULATION OF HEAT-SHOCK FACTOR TRIMER FORMATION - ROLE OF A CONSERVED LEUCINE ZIPPER
    RABINDRAN, SK
    HAROUN, RI
    CLOS, J
    WISNIEWSKI, J
    WU, C
    [J]. SCIENCE, 1993, 259 (5092) : 230 - 234
  • [17] Interaction between heat shock transcription factors (HSFs) and divergent binding sequences - Binding specificities of yeast HSFS and human HSF1
    Sakurai, Hiroshi
    Takemori, Yukiko
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (18) : 13334 - 13341
  • [18] Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression
    Sakurai, Hiroshi
    Enoki, Yasuaki
    [J]. FEBS JOURNAL, 2010, 277 (20) : 4140 - 4149
  • [19] High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer
    Santagata, Sandro
    Hu, Rong
    Lin, Nancy U.
    Mendillo, Marc L.
    Collins, Laura C.
    Hankinson, Susan E.
    Schnitt, Stuart J.
    Whitesell, Luke
    Tamimi, Rulla M.
    Lindquist, Susan
    Ince, Tan A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (45) : 18378 - 18383
  • [20] SHI YH, 1995, MOL CELL BIOL, V15, P4309