MODELING OF ABRASIVE WATER JET MACHINING USING TAGUCHI METHOD AND ARTIFICIAL NEURAL NETWORKS

被引:0
|
作者
Pappas, Menelaos [1 ]
Ntziantzias, Ioannis [2 ]
Kechagias, John [1 ,2 ]
Vaxevanidis, Nikolaos [2 ,3 ]
机构
[1] Technol Educ Inst Larissa, Dept Mech Engn, Larisa 41110, Greece
[2] Univ Thessaly, Dept Mech Engn, Volos 38334, Greece
[3] Sch Pedag & Technol Educ ASPETE, Dept Mech Engn Educators, Athens 14121, Greece
来源
NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS | 2011年
关键词
Abrasive Water Jet Machining (AWJM); Artificial Neural Networks (ANN); Taguchi Method; Surface Quality; Process Parameters; QUALITY; STEELS; SHEET;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a hybrid approach based on the Taguchi method and the Artificial Neural Networks (ANNs) for the modeling of surface quality characteristics in Abrasive Water Jet Machining (AWJM). The selected inputs of the ANN model are the thickness of steel sheet, the nozzle diameter, the stand-off distance and the traverse speed. The outputs of the ANN model are the surface quality characteristics, namely the kerf geometry and the surface roughness. The data used to train the ANN model was selected according to the Taguchi's design of experiments. The acquired results indicate that the proposed modelling approach could be effectively used to predict the kerf geometry and the surface roughness in AWJM, thus supporting the decision making during process planning.
引用
收藏
页码:377 / 380
页数:4
相关论文
共 50 条
  • [1] Parameter estimation for abrasive water jet machining process using neural networks
    Parikh, Pratik J.
    Lam, Sarah S.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 40 (5-6): : 497 - 502
  • [2] Parameter estimation for abrasive water jet machining process using neural networks
    Pratik J. Parikh
    Sarah S. Lam
    The International Journal of Advanced Manufacturing Technology, 2009, 40 : 497 - 502
  • [3] Abrasive water jet machining of CFRPs: single response optimization using taguchi method optimization
    Edriys, I. I.
    Fattouh, M.
    Masoud, R.
    19TH INTERNATIONAL CONFERENCE ON APPLIED MECHANICS AND MECHANICAL ENGINEERING (AMME-19), 2020, 973
  • [4] Optimization of Abrasive Water Jet Machining Parameters for α-β brass using Taguchi Methodology
    Marichamy, S.
    Ravichandran, M.
    Stalin, B.
    Babu, B. Sridhar
    FME TRANSACTIONS, 2019, 47 (01): : 116 - 121
  • [5] Application of Artificial Neural Networks in Abrasive Water Jet Milling
    Gupta, T. V. K.
    Ramkumar, J.
    Tandon, Puneet
    Vyas, N. S.
    CIRPE 2015 - UNDERSTANDING THE LIFE CYCLE IMPLICATIONS OF MANUFACTURING, 2015, 37 : 225 - 229
  • [6] Selection of optimal process parameters by Taguchi method for Drilling GFRP composites using Abrasive Water jet machining Technique
    Prasad, K. Siva
    Chaitanya, G.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (09) : 19714 - 19722
  • [7] Optimization of machinability parameters in abrasive water jet machining of AA7075 using Grey-Taguchi method
    Joel, C.
    Jeyapoovan, T.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 737 - 741
  • [8] Experimentation investigation of abrasive water jet machining parameters using Taguchi and Evolutionary optimization techniques
    Shukla, Rajkamal
    Singh, Dinesh
    SWARM AND EVOLUTIONARY COMPUTATION, 2017, 32 : 167 - 183
  • [9] Investigation of The Abrasive Wear Behavior of GFRC and CFRC with Different Parameters Using Taguchi and Artificial Neural Networks Method
    Demir, Mehmet Emin
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024,
  • [10] Process Optimization of Abrasive Water Jet Machining of Aluminum Hybrid Composite Using Taguchi DEAR Methodology
    M. Manoj
    G. R. Jinu
    J. Suresh Kumar
    International Journal of Metalcasting, 2024, 18 : 933 - 943