Weakly noisy chaotic scattering

被引:12
|
作者
Bernal, Juan D. [1 ]
Seoane, Jesus M. [1 ]
Sanjuan, Miguel A. F. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Fis, Nonlinear Dynam Chaos & Complex Syst Grp, Madrid 28933, Spain
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 03期
关键词
INDECOMPOSABLE CONTINUA; DECAY; MODEL;
D O I
10.1103/PhysRevE.88.032914
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of a weak source of noise on the chaotic scattering is relevant to situations of physical interest. We investigate how a weak source of additive uncorrelated Gaussian noise affects both the dynamics and the topology of a paradigmatic chaotic scattering problem as the one taking place in the open nonhyperbolic regime of the Henon-Heiles Hamiltonian system. We have found long transients for the time escape distributions for critical values of the noise intensity for which the particles escape slower as compared with the noiseless case. An analysis of the survival probability of the scattering function versus the Gaussian noise intensity shows a smooth curve with one local maximum and with one local minimum which are related to those long transients and with the basin structure in phase space. On the other hand, the computation of the exit basins in phase space shows a quadratic curve for which the basin boundaries lose their fractal-like structure as noise turned on.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Final state sensitivity in noisy chaotic scattering
    Nieto, Alexandre R.
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [2] Chaotic scattering in the regime of weakly overlapping resonances
    Dietz, B.
    Friedrich, T.
    Harney, H. L.
    Miski-Oglu, M.
    Richter, A.
    Schaefer, F.
    Weidenmueller, H. A.
    PHYSICAL REVIEW E, 2008, 78 (05):
  • [3] Exponential decay and scaling laws in noisy chaotic scattering
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    PHYSICS LETTERS A, 2008, 372 (02) : 110 - 116
  • [4] Application of permutation entropy method in the analysis of chaotic, noisy, and chaotic noisy series
    Makarkin, S. A.
    Starodubov, A. V.
    Kalinin, Yu. A.
    TECHNICAL PHYSICS, 2017, 62 (11) : 1714 - 1719
  • [5] Application of permutation entropy method in the analysis of chaotic, noisy, and chaotic noisy series
    S. A. Makarkin
    A. V. Starodubov
    Yu. A. Kalinin
    Technical Physics, 2017, 62 : 1714 - 1719
  • [6] Chaotic sequences for noisy environments
    Carroll, T. L.
    Rachford, F. J.
    CHAOS, 2016, 26 (10)
  • [7] THEORY OF WEAKLY NONLINEAR NOISY SYSTEMS
    LARSEN, T
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1991, 19 (05) : 431 - 452
  • [8] Weakly nonlinear response of noisy neurons
    Voronenko, Sergej O.
    Lindner, Benjamin
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [9] A WEAKLY CHAOTIC ITERATION IN RN
    LEADER, JJ
    APPLIED MATHEMATICS LETTERS, 1991, 4 (04) : 49 - 52
  • [10] Chaotic and Arnold stripes in weakly chaotic Hamiltonian systems
    Custodio, M. S.
    Manchein, C.
    Beims, M. W.
    CHAOS, 2012, 22 (02)