A Statistical Framework for Joint eQTL Analysis in Multiple Tissues

被引:168
作者
Flutre, Timothee [1 ,2 ]
Wen, Xiaoquan [3 ]
Pritchard, Jonathan [1 ,4 ]
Stephens, Matthew [1 ,5 ]
机构
[1] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[2] INRA, Dept Plant Genet, Paris, France
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[4] Howard Hughes Med Inst, Chevy Chase, MD USA
[5] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
来源
PLOS GENETICS | 2013年 / 9卷 / 05期
关键词
GENE-EXPRESSION; POWER;
D O I
10.1371/journal.pgen.1003486
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mapping expression Quantitative Trait Loci (eQTLs) represents a powerful and widely adopted approach to identifying putative regulatory variants and linking them to specific genes. Up to now eQTL studies have been conducted in a relatively narrow range of tissues or cell types. However, understanding the biology of organismal phenotypes will involve understanding regulation in multiple tissues, and ongoing studies are collecting eQTL data in dozens of cell types. Here we present a statistical framework for powerfully detecting eQTLs in multiple tissues or cell types (or, more generally, multiple subgroups). The framework explicitly models the potential for each eQTL to be active in some tissues and inactive in others. By modeling the sharing of active eQTLs among tissues, this framework increases power to detect eQTLs that are present in more than one tissue compared with "tissue-by-tissue" analyses that examine each tissue separately. Conversely, by modeling the inactivity of eQTLs in some tissues, the framework allows the proportion of eQTLs shared across different tissues to be formally estimated as parameters of a model, addressing the difficulties of accounting for incomplete power when comparing overlaps of eQTLs identified by tissue-by-tissue analyses. Applying our framework to re-analyze data from transformed B cells, T cells, and fibroblasts, we find that it substantially increases power compared with tissue-by-tissue analysis, identifying 63% more genes with eQTLs (at FDR = 0.05). Further, the results suggest that, in contrast to previous analyses of the same data, the majority of eQTLs detectable in these data are shared among all three tissues.
引用
收藏
页数:13
相关论文
共 40 条
[1]   A Subset-Based Approach Improves Power and Interpretation for the Combined Analysis of Genetic Association Studies of Heterogeneous Traits [J].
Bhattacharjee, Samsiddhi ;
Rajaraman, Preetha ;
Jacobs, Kevin B. ;
Wheeler, William A. ;
Melin, Beatrice S. ;
Hartge, Patricia ;
Yeager, Meredith ;
Chung, Charles C. ;
Chanock, Stephen J. ;
Chatterjee, Nilanjan .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (05) :821-835
[2]   Natural variation in human gene expression assessed in lymphoblastoid cells [J].
Cheung, VG ;
Conlin, LK ;
Weber, TM ;
Arcaro, M ;
Jen, KY ;
Morley, M ;
Spielman, RS .
NATURE GENETICS, 2003, 33 (03) :422-425
[3]   Mapping complex disease traits with global gene expression [J].
Cookson, William ;
Liang, Liming ;
Abecasis, Goncalo ;
Moffatt, Miriam ;
Lathrop, Mark .
NATURE REVIEWS GENETICS, 2009, 10 (03) :184-194
[4]   Common Regulatory Variation Impacts Gene Expression in a Cell Type-Dependent Manner [J].
Dimas, Antigone S. ;
Deutsch, Samuel ;
Stranger, Barbara E. ;
Montgomery, Stephen B. ;
Borel, Christelle ;
Attar-Cohen, Homa ;
Ingle, Catherine ;
Beazley, Claude ;
Arcelus, Maria Gutierrez ;
Sekowska, Magdalena ;
Gagnebin, Marilyne ;
Nisbett, James ;
Deloukas, Panos ;
Dermitzakis, Emmanouil T. ;
Antonarakis, Stylianos E. .
SCIENCE, 2009, 325 (5945) :1246-1250
[5]   Gene Expression in Skin and Lymphoblastoid Cells: Refined Statistical Method Reveals Extensive Overlap in cis-eQTL Signals [J].
Ding, Jun ;
Gudjonsson, Johann E. ;
Liang, Liming ;
Stuart, Philip E. ;
Li, Yun ;
Chen, Wei ;
Weichenthal, Michael ;
Ellinghaus, Eva ;
Franke, Andre ;
Cookson, William ;
Nair, Rajan P. ;
Elder, James T. ;
Abecasis, Goncalo R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 87 (06) :779-789
[6]   A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification [J].
Ferguson, John P. ;
Cho, Judy H. ;
Zhao, Hongyu .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2012, 11 (03)
[7]   Human genetic variation and its contribution to complex traits [J].
Frazer, Kelly A. ;
Murray, Sarah S. ;
Schork, Nicholas J. ;
Topol, Eric J. .
NATURE REVIEWS GENETICS, 2009, 10 (04) :241-251
[8]   Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic Variation of Gene Expression [J].
Fu, Jingyuan ;
Wolfs, Marcel G. M. ;
Deelen, Patrick ;
Westra, Harm-Jan ;
Fehrmann, Rudolf S. N. ;
Meerman, Gerard J. Te ;
Buurman, Wim A. ;
Rensen, Sander S. M. ;
Groen, Harry J. M. ;
Weersma, Rinse K. ;
van den Berg, Leonard H. ;
Veldink, Jan ;
Ophoff, Roel A. ;
Snieder, Harold ;
van Heel, David ;
Jansen, Ritsert C. ;
Hofker, Marten H. ;
Wijmenga, Cisca ;
Franke, Lude .
PLOS GENETICS, 2012, 8 (01)
[9]  
Gelman A., 2006, DATA ANAL USING REGR, DOI DOI 10.1017/CBO9780511790942
[10]   Expression Quantitative Trait Loci Are Highly Sensitive to Cellular Differentiation State [J].
Gerrits, Alice ;
Li, Yang ;
Tesson, Bruno M. ;
Bystrykh, Leonid V. ;
Weersing, Ellen ;
Ausema, Albertina ;
Dontje, Bert ;
Wang, Xusheng ;
Breitling, Rainer ;
Jansen, Ritsert C. ;
de Haan, Gerald .
PLOS GENETICS, 2009, 5 (10)