Importance of van der Waals effects on the hydration of metal ions from the Hofmeister series

被引:15
|
作者
Zhou, Liying [1 ]
Xu, Jianhang [2 ]
Xu, Limei [1 ,3 ]
Wu, Xifan [2 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 150卷 / 12期
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; DENSITY-FUNCTIONAL THEORY; 1ST PRINCIPLES SIMULATIONS; ELECTRONIC-STRUCTURE; AQUEOUS-SOLUTIONS; DIPOLE-MOMENT; WATER; CALCIUM; K+; APPROXIMATION;
D O I
10.1063/1.5086939
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The van der Waals (vdW) interaction plays a crucial role in the description of liquid water. Based on ab initio molecular dynamics simulations, including the non-local and fully self-consistent density-dependent implementation of the Tkatchenko-Scheffler dispersion correction, we systematically studied the aqueous solutions of metal ions (K+, Na+, and Ca2+) from the Hofmeister series. Similar to liquid water, the vdW interactions strengthen the attractions among water molecules in the long-range, leading to the hydrogen bond networks softened in all the ion solutions. However, the degree that the hydration structure is revised by the vdW interactions is distinct for different ions, depending on the strength of short-range interactions between the hydrated ion and surrounding water molecules. Such revisions by the vdW interactions are important for the understanding of biological functionalities of ion channels.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process
    Collins, KD
    METHODS, 2004, 34 (03) : 300 - 311
  • [22] Role of van der Waals corrections in first principles simulations of alkali metal ions in aqueous solutions
    Ikeda, Takashi
    Boero, Mauro
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (19):
  • [23] From van der Waals to protein crystallisation
    Frenkel, D
    Ten Wolde, PR
    STRUCTURE AND DYNAMICS OF MATERIALS IN THE MESOSCOPIC DOMAIN, 1999, : 139 - 149
  • [24] van der Waals Equation of State Revisited: Importance of the Dispersion Correction
    de Visser, Sam P.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (16): : 4709 - 4717
  • [25] Importance of van der Waals interactions forab initiostudies of topological insulators
    Shirali, K.
    Shelton, W. A.
    Vekhter, I
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (03)
  • [26] van der Waals energy of a cluster near a metal surface
    Panat, PV
    Paranjape, VV
    SOLID STATE COMMUNICATIONS, 1999, 113 (02) : 99 - 102
  • [27] van der Waals Correction to the Physisorption of Graphene on Metal Surfaces
    Tang, Hong
    Tao, Jianmin
    Ruzsinszky, Adrienn
    Perdew, John P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (22): : 13748 - 13757
  • [28] Van Der Waals Metal Contacts for Electronic and Optoelectronic Devices
    Lee, Joo-Hong
    Choi, Seung-Gu
    Lee, Jin-Wook
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (04) : 1903 - 1925
  • [29] High mobility in a van der Waals layered antiferromagnetic metal
    Lei, Shiming
    Lin, Jingjing
    Jia, Yanyu
    Gray, Mason
    Topp, Andreas
    Farahi, Gelareh
    Klemenz, Sebastian
    Gao, Tong
    Rodolakis, Fanny
    McChesney, Jessica L.
    Ast, Christian R.
    Yazdani, Ali
    Burch, Kenneth S.
    Wu, Sanfeng
    Ong, Nai Phuan
    Schoop, Leslie M.
    SCIENCE ADVANCES, 2020, 6 (06):
  • [30] Hofmeister Order of Anions on Protein Stability Originates from Lifshitz-van der Waals Dispersion Interaction with the Protein Phase
    Zhao, Lei
    Damodaran, Srinivasan
    LANGMUIR, 2019, 35 (40) : 12993 - 13002