Subpixel-Pixel-Superpixel Guided Fusion for Hyperspectral Anomaly Detection

被引:25
作者
Huang, Zhihong [1 ,2 ]
Fang, Leyuan [1 ,2 ]
Li, Shutao [1 ,2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Key Lab Visual Percept & Artificial Intelligence, Changsha 410082, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 09期
基金
中国国家自然科学基金;
关键词
Feature extraction; Detectors; Hyperspectral imaging; Anomaly detection; Optimization; Object detection; guided filtering; hyperspectral images (HSIs); image fusion; subpixel; FAST ALGORITHM; SPARSE; CLASSIFICATION; REPRESENTATION; SELECTION;
D O I
10.1109/TGRS.2019.2961703
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Most of the existing hyperspectral anomaly detectors are designed based on a single pixel-level feature. These detectors may not adequately utilize spectra spatial information in hyperspectral images (HSIs) for detecting anomalies. To overcome this problem, this article introduces a novel subpixel-pixel-superpixel guided fusion (SPSGF) method for hyperspectral anomaly detection. This approach comprises three main steps. First, subpixel-, pixel-, and superpixel-level features are extracted from an HSI by employing the spectral unmixing, morphological operation, and superpixel segmentation techniques, respectively. Then, based on the spatial consistency of three features, a guided filtering-based weight optimization technique is developed to construct weight maps for fusion. Finally, a simple yet effective decision fusion method is adopted to utilize the complemental information of three features, and then generates a fused detection result. The performance of the proposed approach is evaluated on three real-scene HSIs and one synthetic HSI. Experimental results validate the advantages of the SPSGF method.
引用
收藏
页码:5998 / 6007
页数:10
相关论文
共 55 条
[1]   Attribute openings, thinnings, and granulometries [J].
Breen, EJ ;
Jones, R .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 64 (03) :377-389
[2]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[3]   A cluster-based approach for detecting man-made objects and changes in imagery [J].
Carlotto, MJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (02) :374-387
[4]   Anomaly Detection Using Causal Sliding Windows [J].
Chang, Chein-, I ;
Wang, Yulei ;
Chen, Shih-Yu .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (07) :3260-3270
[5]   A Quantitative and Comparative Assessment of Unmixing-Based Feature Extraction Techniques for Hyperspectral Image Classification [J].
Dopido, Inmaculada ;
Villa, Alberto ;
Plaza, Antonio ;
Gamba, Paolo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :421-435
[6]   A Discriminative Metric Learning Based Anomaly Detection Method [J].
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11) :6844-6857
[7]  
Durand F, 2002, ACM T GRAPHIC, V21, P257, DOI 10.1145/566570.566574
[8]   Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels [J].
Fang, Leyuan ;
Li, Shutao ;
Duan, Wuhui ;
Ren, Jinchang ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12) :6663-6674
[9]   Spectral-Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model [J].
Fang, Leyuan ;
Li, Shutao ;
Kang, Xudong ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08) :4186-4201
[10]   Edge-preserving decompositions for multi-scale tone and detail manipulation [J].
Farbman, Zeev ;
Fattal, Raanan ;
Lischinski, Dani ;
Szeliski, Richard .
ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03)