Balanced Steiner triple systems

被引:2
作者
Colbourn, C [1 ]
Haddad, L [1 ]
Linek, V [1 ]
机构
[1] ROYAL MIL COLL CANADA,KINGSTON,ON K7K 5L0,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jcta.1997.2767
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A coloring of a Steiner triple system is equitable if the cardinalities of the color classes differ by at most one. It is shown that, with the possible exceptions of v is an element of {19, 21, 37, 49, 55, 57, 67, 69, 85, 109, 139}, there exists for all v equivalent to 1, 3 (mod 6) and v greater than or equal to 15, a 3-chromatic Steiner triple system of order v all of whose 3-colorings are equitable. (C) 1997 Academic Press.
引用
收藏
页码:292 / 302
页数:11
相关论文
共 10 条
[1]  
Anderson I., 1990, COMBINATORIAL DESIGN
[2]  
[Anonymous], 1993, J COMBIN MATH COMBIN
[3]   A NEW CLASS OF GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE-3 [J].
COLBOURN, CJ ;
HOFFMAN, DG ;
REES, R .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 59 (01) :73-89
[4]   COLORING STEINER TRIPLE-SYSTEMS [J].
DEBRANDES, M ;
PHELPS, KT ;
RODL, V .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (02) :241-249
[5]   UNBALANCED STEINER TRIPLE-SYSTEMS [J].
HADDAD, L ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) :1-16
[6]  
HADDAD L, COLORING AFFINE PROJ
[7]  
LENZ H, 1982, LECT NOTES MATH, V969, P229
[8]  
Mathon R.A., 1983, ARS COMBINATORIA, V15, P3
[9]  
PELIKAN J, 1969, C MATH SOC J BOLYAI, V4, P869
[10]  
Rosa A., 1970, COMBINATORIAL STRUCT, P369