On Hilbert cubes in certain sets

被引:16
作者
Hegyvári, N
Sárközy, A
机构
[1] Eotvos Lorand Univ, Dept Math, H-1055 Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1088 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Hilbert cube; subset sum; large sieve; Gaussian sums;
D O I
10.1023/A:1009883404485
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of the form {d + Sigma(i) epsilon(i) a : epsilon(i) = 0 or 1, Sigma(i) epsilon(i) < infinity} (where d is a non-negative integer, a(1), a(2), ... are positive integers) is called a Hilbert cube. If {a(1), a(2), ...} is a finite set of, say, k elements, then it called a k-cube, while if {a(1), a(2), ...} is infinite, then the cube is said to be an infinite cube. As a partial answer to a question of Brown, Erdos and Freedman, an upper bound is given for the size of a Hilbert cube contained in the set of the squares not exceeding n. Estimates of Gaussian sums, Gallagher's "large sieves" and a result of Olson play a crucial rule in the proof. Hilbert cubes in other special sets are also studied.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 17 条
  • [1] Baumgartner J.E., 1974, J COMBINATORIAL TH A, V17, P384, DOI DOI 10.1016/0097-3165(74)90103-4
  • [2] QUASI-PROGRESSIONS AND DESCENDING WAVES
    BROWN, TC
    ERDOS, P
    FREEDMAN, AR
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (01) : 81 - 95
  • [3] Burgess D A., 1957, MATHEMATIKA, V4, P106
  • [4] ON PRIME FACTORS OF SUBSET SUMS
    ERDOS, P
    SARKOZY, A
    STEWART, CL
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 209 - 218
  • [5] ERDOS P, 1964, ACTA ARITH, V9, P149
  • [6] Gallagher P. X., 1971, ACTA ARITH, V18, P77
  • [7] Hilbert D., 1892, Journal fur die reine und angewandte Mathematik, V110, P104, DOI [DOI 10.1515/CRLL.1892.110.104, 10.1515/crll.1892.110.104]
  • [8] Hindman N., 1974, Journal of Combinatorial Theory, Series A, V17, P1, DOI 10.1016/0097-3165(74)90023-5
  • [9] 6 INTEGERS OF WHICH THE SUM OF PAIRS IS A SQUARE
    LAGRANGE, J
    [J]. ACTA ARITHMETICA, 1981, 40 (01) : 91 - 96
  • [10] Nicolas J.-L., 1977, B SOC MATH FRANCE ME, V49-50, P141