Real-Time Parameter Estimation of an Electrochemical Lithium-Ion Battery Model Using a Long Short-Term Memory Network

被引:52
|
作者
Chun, Huiyong [1 ]
Kim, Jungsoo [1 ]
Yu, Jungwook [1 ]
Han, Soohee [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Creat IT Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Electrochemical battery model; lithium-ion battery; long short-term memory; real-time parameter estimation; recurrent neural network; synthetic data generation; IDENTIFICATION; CHARGE; STATE; OPTIMIZATION; MANAGEMENT; DISCHARGE;
D O I
10.1109/ACCESS.2020.2991124
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An electrochemical lithium-ion battery model is well known to be suited for effectively describing the microstructure evolution in charging and discharging processes of a lithium-ion battery with practically realizable complexity. This paper presents a neural network-based parameter estimation scheme to identify the parameters of an electrochemical lithium-ion battery model in a near-optimal and real-time manner in order to consistently observe the electrochemical states of batteries. The network is first trained to learn the dynamics of the electrochemical lithium-ion battery model, and then, it is applied to estimate the parameters with available finite-time measurements of voltage, current, temperature, and state of charge. In order to efficiently learn the dynamic characteristics of a lithium-ion battery, a well-known recurrent neural network, called a long short-term memory model, is employed with other techniques such as batch normalization, dropout, and stochastic gradient descent with warm restarts for learning speed enhancement and regularization. Using synthetic and experimental data, we show that the proposed estimation scheme works well, finding parameters and recovering the voltage profiles within the root-mean-square error of 0.43 & x0025; and 26 mV, respectively, even with measurements obtained within a sufficiently short interval of time.
引用
收藏
页码:81789 / 81799
页数:11
相关论文
共 50 条
  • [1] Lithium-Ion Battery SOH Estimation Based on a Long Short-Term Memory Model Using Short History Data
    Li, Wenbin
    Lin, Changwei
    Hosseininasab, Seyedmehdi
    Bauer, Lennart
    Pischinger, Stefan
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2025, 40 (05) : 7370 - 7384
  • [2] State-of-Charge Estimation of Lithium-Ion Battery Integrated in Electrical Vehicle Using a Long Short-Term Memory Network
    Nguyen Van, Chi
    Duc Ngo, Minh
    Duong Duc, Cuong
    Quang Thao, Le
    Ahn, Seon-Ju
    IEEE ACCESS, 2024, 12 : 165472 - 165481
  • [3] A physics-informed neural network approach to parameter estimation of lithium-ion battery electrochemical model
    Wang, Jingrong
    Peng, Qiao
    Meng, Jinhao
    Liu, Tianqi
    Peng, Jichang
    Teodorescu, Remus
    JOURNAL OF POWER SOURCES, 2024, 621
  • [4] Core Temperature Estimation Method for Lithium-Ion Battery Based on Long Short-Term Memory Model With Transfer Learning
    Wang, Nan
    Zhao, Guangcai
    Kang, Yongzhe
    Wang, Wei
    Chen, Alian
    Duan, Bin
    Zhang, Chenghui
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2023, 11 (01) : 201 - 213
  • [5] The early prediction of lithium-ion battery remaining useful life using a novel Long Short-Term Memory network
    Zhang, Meng
    Wu, Lifeng
    Peng, Zhen
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1364 - 1371
  • [6] Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction
    Wang, Yixiu
    Zhu, Jiangong
    Cao, Liang
    Gopaluni, Bhushan
    Cao, Yankai
    APPLIED ENERGY, 2023, 350
  • [7] Electrochemical Model Parameter Identification of Lithium-Ion Battery with Temperature and Current Dependence
    Chen, Long
    Xu, Ruyu
    Rao, Weining
    Li, Huanhuan
    Wang, Ya-Ping
    Yang, Tao
    Jiang, Hao-Bin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4124 - 4143
  • [8] State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network
    Yang, Fangfang
    Song, Xiangbao
    Xu, Fan
    Tsui, Kwok-Leung
    IEEE ACCESS, 2019, 7 : 53792 - 53799
  • [9] State of Charge Estimation using Recurrent Neural Networks with Long Short-Term Memory for Lithium-Ion Batteries
    Bockrath, S.
    Rosskopf, A.
    Koffel, S.
    Waldhoer, S.
    Srivastava, K.
    Lorentz, V. R. H.
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 2507 - 2511
  • [10] Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature
    Cai, Lei
    Meng, Jinhao
    Stroe, Daniel-Ioan
    Peng, Jichang
    Luo, Guangzhao
    Teodorescu, Remus
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (11) : 11855 - 11864