An adaptive dimension level adjustment framework for differential evolution

被引:25
作者
Deng, Li-Bao [1 ]
Li, Chun-Lei [1 ]
Sun, Gao-Ji [2 ]
机构
[1] Harbin Inst Technol, Sch Informat Sci & Engn, Weihai, Peoples R China
[2] Zhejiang Normal Univ, Coll Econ & Management, Jinhua, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential evolution; Reinitialization framework; Improvement framework; Dimension level adjustment; Global optimization; GLOBAL OPTIMIZATION; DIRECTION INFORMATION; ALGORITHM; MUTATION; NEIGHBORHOOD; PARAMETERS; ENSEMBLE;
D O I
10.1016/j.knosys.2020.106388
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution (DE) has been recognized as one of the most popular evolutionary algorithms. There are numerous DE variants adopting multi-operators based cooperation strategy to improve their performance, but almost all of the adopted cooperation strategies are essentially implemented at the individual level or population level, and the implementation at the dimension level are scarce. In this paper, an adaptive dimension level adjustment (ADLA) framework is designed to relieve the premature convergence or stagnation problem faced by DE algorithm, which can be easily combined with diverse DE variants. When the current optimal individual cannot get improved for a given uninterrupted iterations, ADLA framework will be triggered to select some individuals at random according to specific rule and reinitialize portion of their dimensions from a dynamic search space that adjusted by a population level macroparameter and one individual level microparameter. Moreover, ADLA framework contains two reinitialization operators with different search characteristics, and the coordination between them is executed at the dimension level, which has potential advantages in balancing the global exploration ability and local exploitation ability. Extensive comparison experiments are carried out based on IEEE CEC 2014 test platform, two basic DE algorithms and six outstanding DE variants. The experimental results demonstrate that ADLA framework can memorably enhance the performance of every DE algorithm used for comparison. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 60 条
[1]   Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution [J].
Abd Elaziz, Mohamed ;
Xiong, Shengwu ;
Jayasena, K. P. N. ;
Li, Lin .
KNOWLEDGE-BASED SYSTEMS, 2019, 169 :39-52
[2]   Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy [J].
Al-Dabbagh, Rawaa Dawoud ;
Neri, Ferrante ;
Idris, Norisma ;
Baba, Mohd Sapiyan .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 43 :284-311
[3]  
[Anonymous], 2013, PROBLEM DEFINITIONS
[4]   CADE: A hybridization of Cultural Algorithm and Differential Evolution for numerical optimization [J].
Awad, Noor H. ;
Ali, Mostafa Z. ;
Suganthan, Ponnuthurai N. ;
Reynolds, Robert G. .
INFORMATION SCIENCES, 2017, 378 :215-241
[5]   Differential Evolution: A review of more than two decades of research [J].
Bilal ;
Pant, Millie ;
Zaheer, Hira ;
Garcia-Hernandez, Laura ;
Abraham, Ajith .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 90
[6]   Social learning differential evolution [J].
Cai, Yiqiao ;
Liao, Jingliang ;
Wang, Tian ;
Chen, Yonghong ;
Tian, Hui .
INFORMATION SCIENCES, 2018, 433 :464-509
[7]   Adaptive direction information in differential evolution for numerical optimization [J].
Cai, Yiqiao ;
Wang, Jiahai ;
Chen, Yonghong ;
Wang, Tian ;
Tian, Hui ;
Luo, Wei .
SOFT COMPUTING, 2016, 20 (02) :465-494
[8]   Differential Evolution With Neighborhood and Direction Information for Numerical Optimization [J].
Cai, Yiqiao ;
Wang, Jiahai .
IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) :2202-2215
[9]   Self-adaptive differential artificial bee colony algorithm for global optimization problems [J].
Chen, Xu ;
Tianfield, Huaglory ;
Li, Kangji .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 45 :70-91
[10]   Bernstain-search differential evolution algorithm for numerical function optimization [J].
Civicioglu, Pinar ;
Besdok, Erkan .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 138