Copolymer-assisted Polypropylene Separator for Fast and Uniform Lithium Ion Transport in Lithium-ion Batteries

被引:26
|
作者
Yan, Yan [1 ]
Kong, Qing-Ran [1 ]
Sun, Chuang-Chao [1 ]
Yuan, Jia-Jia [1 ]
Huang, Zheng [1 ]
Fang, Li-Feng [1 ]
Zhu, Bao-Ku [1 ]
Song, You-Zhi [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, Key Lab Macromol Synth & Functionalizat, ERC Membrane & Water Treatment,Minist Educ, Hangzhou 310027, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Polyelectrolytes; Polypropylene separator; Lithium ion transport; Dendrite-free; Lithium-ion battery; GEL POLYMER; POLYETHYLENE SEPARATORS; ELECTROLYTE; CONDUCTIVITY; DEPOSITION;
D O I
10.1007/s10118-020-2455-1
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In lithium-ion batteries (LIBs), separators play a vital role in lithium-ion (Li+) transport, and thus affect rate performance, battery life, and safety. Here, a new kind of multifunctional copolymer poly(acrylonitrile-co-lithium acrylate-co-butyl acrylate) (PAAB-Li) is synthesized through soap-free emulsion polymerization, and is used to form homogeneous-covered separator based on PP matrix by a simple dip-annealing process. Compared to the bare PP separator, the modified separators with PAAB-Li enable higher ionic conductivity, higher lithium ion transference number (increased from 0.360 to 0.525), and lower interface impedance (reduced from 155 omega to 34 omega). It has been indicated that PAAB-Li functional layer significantly promotes the fast transport of Li(+)and improves the compatibility of the separator/electrolyte-electrode interface. The LiCoO2/graphite cells with the PAAB-Li-assisted separator demonstrate excellent cycle stability and rate performance. In addition, the Li symmetric cells with the modified separator stably cycle over 800 h, indicating the functional layer effectively suppresses the lithium dendrite growth. This facile strategy can be easily applied to LIBs requiring high safety and even be scalable to Li metal batteries. Moreover, the possible mechanism of the PAAB-Li functional layer promoting fast and uniform Li+ transport is discussed in this paper.
引用
收藏
页码:1313 / 1324
页数:12
相关论文
共 50 条
  • [41] Improved performances of lithium-ion batteries with a separator based on inorganic fibers
    Wang, Meina
    Chen, Xin
    Wang, Hong
    Wu, Haibo
    Jin, Xiangyu
    Huang, Chen
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (01) : 311 - 318
  • [42] Preparation and Performances of Zeolite-based Separator for Lithium-ion Batteries
    Zhang H.-T.
    Shang H.
    Gu B.
    Zhang H.-Y.
    Cailiao Gongcheng/Journal of Materials Engineering, 2017, 45 (12): : 83 - 87
  • [43] Multilayer Nanofiber Composite Separator for Lithium-Ion Batteries with High Safety
    Yang, Wenxiu
    Liu, Yanbo
    Hu, Xuemin
    Yao, Jinbo
    Chen, Zhijun
    Hao, Ming
    Tian, Wenjun
    Huang, Zheng
    Li, Fangying
    POLYMERS, 2019, 11 (10)
  • [44] The Role of Separator Thermal Stability in Safety Characteristics of Lithium-ion Batteries
    Zhou, Hanwei
    Fear, Conner
    Parekh, Mihit
    Gray, Frederick
    Fleetwood, James
    Adams, Thomas
    Tomar, Vikas
    Pol, Vilas G.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (09)
  • [45] Synthesis of polypropylene nanofiber separators for lithium-ion batteries via nanolayer coextrusion
    Zou, Zhanghua
    Wei, Yanli
    Hu, Zhiyu
    Pu, Hongting
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [46] Fast-Charging Strategies for Lithium-Ion Batteries: Advances and Perspectives
    Zhao, Jingteng
    Song, Congying
    Li, Guoxing
    CHEMPLUSCHEM, 2022, 87 (07):
  • [47] Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries
    Pan, Jie
    Zhang, Qinglin
    Li, Juchuan
    Beck, Matthew J.
    Xiao, Xingcheng
    Cheng, Yang-Tse
    NANO ENERGY, 2015, 13 : 192 - 199
  • [48] Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries
    Huang, Zongle
    Sun, Wenting
    Sun, Zhipeng
    Ding, Rui
    Wang, Xuebin
    MATERIALS, 2023, 16 (12)
  • [49] Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries
    Song, Yanghui
    Zhao, Guanglei
    Zhang, Sihan
    Xie, Chong
    Yang, Runde
    Li, Xiaofeng
    CARBOHYDRATE POLYMERS, 2024, 329
  • [50] In-depth correlation of separator pore structure and electrochemical performance in lithium-ion batteries
    Lee, Yunju
    Park, Joonam
    Jeon, Hyunkyu
    Yeon, Daeyong
    Kim, Byung-Hyun
    Cho, Kuk Young
    Ryou, Myung-Hyun
    Lee, Yong Min
    JOURNAL OF POWER SOURCES, 2016, 325 : 732 - 738