Pulsating fronts for nonlocal dispersion and KPP nonlinearity

被引:115
作者
Coville, Jerome [1 ]
Davila, Juan [2 ,3 ]
Martinez, Salome [2 ,3 ]
机构
[1] Ctr Rech Avignon, Equipe BIOSP, INRA, F-84914 Avignon 9, France
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, CMM, Santiago, Chile
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2013年 / 30卷 / 02期
关键词
Periodic front; Nonlocal dispersal; KPP nonlinearity; FRAGMENTED ENVIRONMENT MODEL; REACTION-DIFFUSION EQUATIONS; TRAVELING-WAVES; MAXIMUM PRINCIPLE; HETEROGENEOUS ENVIRONMENTS; MONOSTABLE NONLINEARITY; DIFFERENCE EQUATIONS; PHASE-TRANSITIONS; SPREADING SPEEDS; EXCITABLE MEDIA;
D O I
10.1016/j.anihpc.2012.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are interested in propagation phenomena for nonlocal reaction diffusion equations of the type: a It partial derivative u/partial derivative t = J * u - u + f(x,u) t is an element of R, x is an element of R-N, where J is a probability density and f is a KPP nonlinearity periodic in the x variables. Under suitable assumptions we establish the existence of pulsating fronts describing the invasion of the 0 state by a heterogeneous state. We also give a variational characterization of the minimal speed of such pulsating fronts and exponential bounds on the asymptotic behavior of the solution. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:179 / 223
页数:45
相关论文
共 66 条
[1]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[2]  
[Anonymous], STOCHASTIC ANAL APPL
[3]   Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J].
Bates, Peter W. ;
Zhao, Guangyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :428-440
[4]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[5]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[6]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[7]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[8]   Gradient estimates for elliptic regularizations of semilinear parabolic and degenerate elliptic equations [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :139-156
[9]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[10]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032