Training multilayer perceptron classifiers based on a modified support vector method

被引:73
作者
Suykens, JAK
Vandewalle, J
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT SISTA, B-3001 Heverlee, Belgium
[2] Natl Fund Sci Res FWO, Flanders, Belgium
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1999年 / 10卷 / 04期
关键词
classification; multilayer perceptrons; support vector machines;
D O I
10.1109/72.774254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we describe a training method for one hidden layer multilayer perceptron classifier which is based on the idea of support vector machines (SVM's). An upper bound on the Vapnik-Chervonenkis (VC) dimension is iteratively minimized over the interconnection matrix of the hidden layer and its bias vector. The output weights are determined according to the support vector method, but without making use of the classifier form which is related to Mercer's condition. The method is illustrated on a two-spiral classification problem.
引用
收藏
页码:907 / 911
页数:5
相关论文
共 16 条
[1]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[2]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[3]  
Cherkassky V.S., 1998, LEARNING DATA CONCEP, V1st ed.
[4]  
Fletcher Roger., 1987, PRACTICAL METHODS OP, DOI [DOI 10.1002/9781118723203, 10.1002/9781118723203]
[5]  
Gill M., 1981, Practical Optimization
[6]  
Haykin S., 1994, NEURAL NETWORKS COMP
[7]  
OSUNA E, P NNSP 97 AM ISL FL
[8]   Circular backpropagation networks for classification [J].
Ridella, S ;
Rovetta, S ;
Zunino, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (01) :84-97
[9]   Comparing support vector machines with Gaussian kernels to radial basis function classifiers [J].
Scholkopf, B ;
Sung, KK ;
Burges, CJC ;
Girosi, F ;
Niyogi, P ;
Poggio, T ;
Vapnik, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) :2758-2765
[10]   The connection between regularization operators and support vector kernels [J].
Smola, AJ ;
Scholkopf, B ;
Muller, KR .
NEURAL NETWORKS, 1998, 11 (04) :637-649