Structural stability for the resonant porous penetrative convection

被引:2
|
作者
Liu, Yan [1 ]
机构
[1] Guangdong Univ Finance, Dept Appl Math, Guangzhou 510521, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Structural stability; Forchheimer equations; The Forchheimer coefficient; Darcy equations; DOUBLE-DIFFUSIVE CONVECTION; BRINKMAN-FORCHHEIMER EQUATIONS; SPATIAL DECAY; CONTINUOUS DEPENDENCE; DARCY FLOW; PLANE FLOW; CONVERGENCE; MODEL; FLUID; MEDIA;
D O I
10.1017/S0956792512000253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the structural stability of a problem in a porous medium when the density of saturating liquid is a nonlinear function of temperature and an internal heat source is present. We prove a convergence result for the Forchheimer coefficient. That is to say, when lambda -> 0, the solution of the non-isothermal flow in a porous medium of the Forchheimer type, see (1.1), can converge to the solution of the equivalent Darcy type.
引用
收藏
页码:761 / 775
页数:15
相关论文
共 50 条