Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell

被引:257
|
作者
Xu, Fei [1 ]
Cao, Fu-qian [1 ]
Kong, Qiang [1 ]
Zhou, Lu-lu [1 ]
Yuan, Qing [1 ]
Zhu, Ya-jie [1 ]
Wang, Qian [1 ]
Du, Yuan-da [1 ]
Wang, Zhi-de [2 ]
机构
[1] Shandong Normal Univ, Univ Shandong, Collaborat Innovat Ctr Human Nat & Green Dev, Coll Geog & Environm, Jinan 250014, Shandong, Peoples R China
[2] Rushan 2 Middle Sch, Weihai 264500, Peoples R China
基金
中国国家自然科学基金;
关键词
Constructed wetland; Electricity production performance; Microbial diversity; Microbial fuel cell; Wastewater treatment; WASTE-WATER TREATMENT; ACTIVATED-SLUDGE; REMOVAL; GENERATION; FLOW; PLANT; BATCH; PERFORMANCE; TECHNOLOGY; NITROGEN;
D O I
10.1016/j.cej.2018.02.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Constructed wetlands combined with microbial fuel cell (CW-MFC) could purify the wastewater while using microorganisms to generate electricity. Our study investigated pollutant removal and microorganism evolution in CW and CW-MFC. The average removal rate of total nitrogen (82.46 +/- 4.74%) in the CW-MFC was highly significant (p < 0.01) higher than that in the CW. The average removal rate of chemical oxygen demand (82.32 +/- 12.85%) and total phosphorus (95.06 +/- 5.45%) in the CW-MFC were higher than those in the CW. In the CW-MFC, the average voltage was 265.77 +/- 12.66 mV and the highest power density was 3714.08 mW center dot m(-2). The microbial community diversity and richness of the CW-MFC system were higher than those of the CW system. The read number of ammonia oxidizing (149 +/- 7), nitrite-oxidizing (144 +/- 8, 132 +/- 18) and anammox bacteria (281 +/- 8) were the highest in the CW-MFC (Anode). The contents of denitrification, dissimilatory nitrate reduction to ammonium, and electrochemically active bacteria in the CW-MFC (Cathode) were significantly (p < 0.05) higher than others.
引用
收藏
页码:479 / 486
页数:8
相关论文
共 50 条
  • [41] Modified basalt fiber filled in constructed wetland-microbial fuel cell: Comparison of performance and microbial impacts under PFASs exposure
    Qian, Xiuwen
    Huang, Juan
    Cao, Chong
    Yao, Jiawei
    Wu, Yufeng
    Wang, Luming
    Wang, Xinyue
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 476
  • [42] Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process
    Liu, Feng
    Sun, Lei
    Wan, Jinbao
    Shen, Liang
    Yu, Yanhong
    Hu, Lingling
    Zhou, Ying
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2020, 89 : 252 - 263
  • [43] Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process
    Feng Liu
    Lei Sun
    Jinbao Wan
    Liang Shen
    Yanhong Yu
    Lingling Hu
    Ying Zhou
    Journal of Environmental Sciences, 2020, (03) : 252 - 263
  • [44] Wetland plants selection and electrode optimization for constructed wetland-microbial fuel cell treatment of Cr(VI)-containing wastewater
    Liu, Shentan
    Lu, Feifan
    Qiu, Dengfei
    Feng, Xiaojuan
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 49
  • [45] Performance and mechanism of constructed wetland-microbial fuel cell systems in treating mariculture wastewater contaminated with antibiotics
    Liu, Fei-fei
    Zhang, Yu-xue
    Lu, Tong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 169 : 293 - 303
  • [46] Nutrients Mass Balance in an Integrated Constructed Wetland-Microbial Fuel Cell System Using Activated Carbon
    Wang, Xiaoou
    Liu, Qingyun
    Xia, Weiyi
    Zhang, Changping
    ENVIRONMENTAL ENGINEERING SCIENCE, 2025,
  • [47] Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell
    Yang, Qiao
    Wu, Zhenxing
    Liu, Lifen
    Zhang, Fengxiang
    Liang, Shengna
    MATERIALS, 2016, 9 (11):
  • [48] The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland
    Srivastava, Pratiksha
    Yadav, Asheesh Kumar
    Mishra, Barada Kanta
    BIORESOURCE TECHNOLOGY, 2015, 195 : 223 - 230
  • [49] Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation
    Yang, Yan
    Zhao, Yaqian
    Tang, Cheng
    Xu, Lei
    Morgan, David
    Liu, Ranbin
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [50] Nutrient Removal and Bioelectricity Generation in a Constructed Wetland-Microbial Fuel Cell: Performance of Pyrite Anode Materials
    Feng, Shu
    Xu, Pei
    Han, Jun-Cheng
    Yang, Hou-Yun
    Huang, Xian-Huai
    Yu, Li
    Liu, Jun
    Zhang, Bin-Bin
    Li, Wei-Hua
    ENVIRONMENTAL ENGINEERING SCIENCE, 2025, 42 (03) : 103 - 116