From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

被引:5
作者
Jurco, Branislav [1 ]
机构
[1] Charles Univ Prague, Math Inst, Prague 18675, Czech Republic
关键词
Simplicial Lie algebra; Hypercrossed complex; Dg Lie algebra; 1-jet; GEOMETRY;
D O I
10.1016/j.geomphys.2012.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each G(n) is simply connected. We use the 1-jet of the classifying space (W) over barG to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2389 / 2400
页数:12
相关论文
共 23 条
[1]  
Akca I., 2002, Homology Homotopy Appl., V4, P43, DOI [10.4310/HHA.2002.v4.n1.a4, DOI 10.4310/HHA.2002.V4.N1.A4]
[2]   The geometry of the master equation and topological quantum field theory [J].
Alexandrov, M ;
Schwarz, A ;
Zaboronsky, O ;
Kontsevich, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07) :1405-1429
[3]  
Arvasi Z., ARXIV08124685MATHCT
[4]   Nonabelian bundle gerbes, their differential geometry and gauge theory [J].
Aschieri, P ;
Cantini, L ;
Jurco, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :367-400
[5]  
Baez J., 2004, THEOR APPL CATEG, V12, P492
[6]   GROUP-THEORETIC ALGEBRAIC MODELS FOR HOMOTOPY TYPES [J].
CARRASCO, P ;
CEGARRA, AM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 75 (03) :195-235
[7]   GENERALIZED CROSSED LENGTH-2 MODULES [J].
CONDUCHE, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 34 (2-3) :155-178
[8]   SIMPLICIAL HOMOTOPY THEORY [J].
CURTIS, EB .
ADVANCES IN MATHEMATICS, 1971, 6 (02) :107-&
[9]  
Dupont J., 1978, LNM, V640
[10]  
DUSKIN JW, 2002, THEORY APPL CATEG, V9, P198