A transcendental invariant of pseudo-Anosov maps

被引:3
作者
Sun, Hongbin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
MAGIC; 3-MANIFOLD; HOMEOMORPHISMS; FOLIATIONS; ENTROPY; FLOWS; NORM;
D O I
10.1112/jtopol/jtv010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each pseudo-Anosov map phi : S -> S, we associate it with a Q-vector space lying in R, and denote it by A(S,phi). The invariant A(S,phi) is defined by an interaction between the Thurston norm and the dilatation of pseudo-Anosov maps. We develop a few nice properties of A(S,phi) and give a few examples to show that A(S,phi) is a nontrivial invariant. These nontrivial examples give an answer to a question asked by McMullen, and show that the minimal point of the restriction of the dilatation function on the fibered face need not be a rational point.
引用
收藏
页码:711 / 743
页数:33
相关论文
共 24 条
  • [1] Agol I, 2013, DOC MATH, V18, P1045
  • [2] Criteria for virtual fibering
    Agol, Ian
    [J]. JOURNAL OF TOPOLOGY, 2008, 1 (02) : 269 - 284
  • [3] [Anonymous], 2012, Princeton Mathematical Series
  • [4] [Anonymous], 1997, Progress in knot theory and related topics, volume 56 of Travaux en Cours
  • [5] [Anonymous], 2001, SMF/AMS Texts and Monographs
  • [6] TRAIN-TRACKS FOR SURFACE HOMEOMORPHISMS
    BESTVINA, M
    HANDEL, M
    [J]. TOPOLOGY, 1995, 34 (01) : 109 - 140
  • [7] ON FIBERED COMMENSURABILITY
    Calegari, Danny
    Sun, Hongbin
    Wang, Shicheng
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2011, 250 (02) : 287 - 317
  • [8] Casson A., 1988, LONDON MATH SOC STUD, V9
  • [9] Fathi A., 1979, ASTERISQUE, V66-67, P251
  • [10] Fel'dman N., 1998, ENCY MATH SCI, V44