A simple reduction from maximum weight matching to maximum cardinality matching

被引:11
作者
Pettie, S. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Graph algorithms; Maximum matching; FASTER SCALING ALGORITHMS; GRAPHS; PATHS;
D O I
10.1016/j.ipl.2012.08.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let MCM(m, n) and MWM(m. n. N) be the complexities of computing a maximum cardinality matching and a maximum weight matching, and let MCMbi, MWMbi be their counterparts for bipartite graphs, where m, n, and N are the edge count, vertex count, and maximum integer edge weight. Kao, Lam, Sung, and Ting (2001) [1] gave a general reduction showing MWMbi(m, n, N) = 0(N . MCMbi(m, n)) and Huang and Kavitha (2012) [2] recently proved the analogous result for general graphs, that MWM(m. n, N) = 0(N . MCM(m,n)). We show that Gabow's MWMbi and MWM algorithms from 1983 [3] and 1985 [4] can be modified to replicate the results of Kao et al. and Huang and Kavitha, but with dramatically simpler proofs. We also show that our reduction leads to new bounds on the complexity of MWM on sparse graph classes, e.g., (bipartite) planar graphs, bounded genus graphs, and H-minor-free graphs. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:893 / 898
页数:6
相关论文
共 32 条
  • [21] ALGEBRAIC ALGORITHMS FOR MATCHING AND MATROID PROBLEMS
    Harvey, Nicholas J. A.
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 39 (02) : 679 - 702
  • [22] Hopcroft J. E., 1973, SIAM Journal on Computing, V2, P225, DOI 10.1137/0202019
  • [23] A decomposition theorem for maximum weight bipartite matchings
    Kao, MY
    Lam, TW
    Sung, WK
    Ting, HF
    [J]. SIAM JOURNAL ON COMPUTING, 2001, 31 (01) : 18 - 26
  • [24] Karzanov AV, 1973, Problems in Cybernetics, V5, P66
  • [25] Micali S., 1980, 21st Annual Symposium on Foundations of Computer Science, P17
  • [26] Maximum matchings in planar graphs via Gaussian elimination
    Mucha, M
    Sankowski, P
    [J]. ALGORITHMICA, 2006, 45 (01) : 3 - 20
  • [27] Maximum matchings via Gaussian elimination
    Mucha, M
    Sankowski, P
    [J]. 45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 248 - 255
  • [28] NEW SCALING ALGORITHMS FOR THE ASSIGNMENT AND MINIMUM MEAN CYCLE PROBLEMS
    ORLIN, JB
    AHUJA, RK
    [J]. MATHEMATICAL PROGRAMMING, 1992, 54 (01) : 41 - 56
  • [29] Maximum weight bipartite matching in matrix multiplication time
    Sankowski, Piotr
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (44) : 4480 - 4488
  • [30] Thorup M, 2004, J COMPUT SYST SCI, V69, P330, DOI [10.1016/j.jcss.2004.04.003, 10.1016/j jcss.2004.04.003]