Slow and rapid cooling of Al-Cu-Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties

被引:15
作者
de Gouveia, Guilherme Lisboa [1 ]
Kakitani, Rafael [2 ]
Gomes, Leonardo Fernandes [1 ]
Moreira Afonso, Conrado Ramos [1 ]
Cheung, Noe [2 ]
Spinelli, Jose Eduardo [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Estadual Campinas, UNICAMP, Dept Mfg & Mat Engn, BR-13083860 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
rapid solidification; microstructure; strength; HIGH-STRENGTH; TENSILE PROPERTIES; SOLIDIFICATION; ALLOYS; ALUMINUM; NANOCRYSTALLINE; DUCTILITY;
D O I
10.1557/jmr.2018.495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ternary Al-15 wt% Cu-7 wt% Si and Al-22 wt% Cu-7 wt% Si alloy specimens were generated by transient directional solidification (DS) and rapid solidification (RS) techniques. The microstructures are constituted by an alpha-Al dendritic matrix surrounded by two eutectic, that is, a binary eutectic (Si + alpha-Al) and a bimodal eutectic, consisting of cellular-type binary eutectic colonies (alpha-Al + Al2Cu) in a ternary eutectic matrix consisting of alpha-Al + Al2Cu + Si. The bimodal eutectic exists at cooling rates from 0.5 to 250 K/s. The secondary dendritic spacing, lambda(2), of the DS samples varied from 5 to 20 mu m and from 10 to 18 mu m for both examined alloys. The lambda(2) from 2.7 to 4.0 mu m characterized the RS samples. Mechanical properties have been determined for various samples related to different dendritic spacing values. Based on the evaluation of the rapidly solidified microstructures, it was possible to assess the cooling rates.
引用
收藏
页码:1381 / 1394
页数:14
相关论文
共 36 条
[1]  
[Anonymous], 1988, DYN CURVED FRONT, DOI [10.1016/B978-0-08-092523-3.50040-X., DOI 10.1016/B978-0-08-092523-3.50040-X]
[2]  
[Anonymous], 2017, KIDNEY INT S, V7, p[1, 1], DOI DOI 10.1016/j.kisu.2017.04.001
[3]   Microstructure, tensile properties and wear resistance correlations on directionally solidified Al-Sn-(Cu; Si) alloys [J].
Bertelli, Felipe ;
Freitas, Emmanuelle S. ;
Cheung, Noe ;
Arenas, Maria A. ;
Conde, Ana ;
de Damborenea, Juan ;
Garcia, Amauri .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 :3621-3631
[4]   Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys [J].
Cadirli, Emin ;
Buyuk, Ugur ;
Engin, Sevda ;
Kaya, Hasan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 694 :471-479
[5]   Characterisation of intermetallic phases in multicomponent Al-Si casting alloys for engineering applications [J].
Chen, C. L. ;
West, G. ;
Thomson, R. C. .
ALUMINIUM ALLOYS 2006, PTS 1 AND 2: RESEARCH THROUGH INNOVATION AND TECHNOLOGY, 2006, 519-521 :359-364
[6]   Solidification phenomena related to direct chill casting of aluminium alloys: fundamental studies and future challenges [J].
Eskin, D. G. ;
Katgerman, L. .
MATERIALS TECHNOLOGY, 2009, 24 (03) :152-156
[7]  
Ghassemali E., 2017, HALL PETCH EQUATION, P17
[8]   THE SOLIDIFICATION OF MONOTECTIC ALLOYS - MICROSTRUCTURES AND PHASE SPACINGS [J].
GRUGEL, RN ;
LOGRASSO, TA ;
HELLAWELL, A .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1984, 15 (06) :1003-1012
[9]   Directional solidification of aluminium -: copper alloys [J].
Gündüz, M ;
Çadirli, E .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 327 (02) :167-185
[10]   THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS [J].
HALL, EO .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381) :747-753