Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification

被引:141
|
作者
Kam, D. H. [1 ]
Bhattacharya, S. [1 ]
Mazumder, J. [1 ]
机构
[1] Univ Michigan, Ctr Lasers & Plasmas Adv Mfg, Ann Arbor, MI 48109 USA
关键词
ZEOLITE COATINGS; WATER SEPARATION; SILICON; IRRADIATION; WETTABILITY; ABLATION; TITANIUM;
D O I
10.1088/0960-1317/22/10/105019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simple and effective method without vacuum to control the wetting properties of AISI 316L stainless steel using femtosecond laser pulses at high repetition rate has been developed. Both hydrophilic and hydrophobic surfaces were formed by creating micro-conical structures on the surface with femtosecond laser irradiation in air. The scan speed was found to be an effective parameter in controlling micro-cone morphology, size and number densities and contact angles during surface wettability experiments. It was found during surface wettability experiments that the contact angle of water varied from 0 degrees (superhydrophilic) to 113 degrees on laser micro-cone textured surfaces depending on processing conditions. Additionally, a superhydrophobic AISI 316L stainless steel surface was created (contact angle similar to 150 degrees) with a functionalized silane coating on already hydrophobic surface geometry.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Laser Surface Melting of AISI 316L Stainless Steel for Bio-implant Application
    Majumdar, Jyotsna Dutta
    Kumar, Arun
    Pityana, Sisa
    Manna, I.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (03) : 387 - 403
  • [22] Effect of laser surface treatment on high cycle fatigue of AISI 316L stainless steel
    Stamm, H
    Holzwarth, U
    Boerman, DJ
    Marques, FD
    Olchini, A
    Zausch, R
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1996, 19 (08) : 985 - 995
  • [23] Laser Surface Melting of AISI 316L Stainless Steel for Bio-implant Application
    Jyotsna Dutta Majumdar
    Arun Kumar
    Sisa Pityana
    I. Manna
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 387 - 403
  • [24] Microstructures and Properties of Laser Surface-Reinforced 316L Stainless Steel
    Li Hongpeng
    Sheng Jinma
    Li Bin
    Chang Jiang
    Zhang Yujiao
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (19)
  • [25] Hardening of 316L stainless steel by laser surface alloying
    Laroudie, F.
    Tassin, C.
    Pons, M.
    1995, Chapman & Hall Ltd, London, United Kingdom (30)
  • [26] SURFACE MODIFICATION OF A BIOMETALLIC AISI 316L STAINLESS STEEL BY MEANS OF PULSED ELECTRON BEAM TREATMENT
    Zhang, Kemin
    TMS 2009 138TH ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 3: GENERAL PAPER SELECTIONS, 2009, : 581 - 585
  • [27] Surface hardening of AISI 316L stainless steel using plasma carburizing
    Suh, BS
    Lee, WJ
    THIN SOLID FILMS, 1997, 295 (1-2) : 185 - 192
  • [28] Wear behaviors of AISI 316L stainless steel with a gradient structured surface layer induced by laser shock peening
    Luo, Kaiyu
    Xu, Shengkai
    Xu, Lujie
    Xing, Yu
    Zhang, Hongmei
    Wang, Changyu
    Lu, Jinzhong
    SURFACE & COATINGS TECHNOLOGY, 2024, 481
  • [29] Exploring the impact of laser surface oxidation parameters on surface chemistry and corrosion behaviour of AISI 316L stainless steel
    Swayne, Mark
    Perumal, Gopinath
    Padmanaban, Dilli Babu
    Mariotti, Davide
    Brabazon, Dermot
    APPLIED SURFACE SCIENCE ADVANCES, 2024, 22
  • [30] Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi
    Chiu, KY
    Cheng, FT
    Man, HC
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 392 (1-2): : 348 - 358