A new perspective in optimum sizing of hybrid renewable energy systems: Consideration of component performance degradation issue

被引:34
作者
Erdinc, O. [1 ]
Uzunoglu, M. [1 ]
机构
[1] Yildiz Tech Univ, Dept Elect Engn, TR-34220 Istanbul, Turkey
关键词
Alternative energy; Hybrid system; Optimum sizing; Performance degredation; POWER-GENERATION SYSTEM; SUSTAINABLE ENERGY; OPTIMIZATION; DESIGN; MANAGEMENT; SIMULATION;
D O I
10.1016/j.ijhydene.2012.04.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ever increasing demand for energy and the concerns on the environmental sustainability issue all around the world lead to more interest in alternative sources for energy production. However, as the current costs of the alternative sources such as solar, wind energy conversion systems etc. are relatively higher as compared to the conventional means of energy production, an optimum sizing approach is quite necessary in order to avoid over-sizing of such systems without lowering the reliability of load demand supply in all possible conditions including the variability of meteorological conditions or the changing power demand of load. There are many research papers available in the literature dealing with this optimum sizing issue. Even the mentioned papers significantly contribute to the wider penetration of such sources, none of them consider the power output degradation of alternative energy sources due to aging during their pre-defined operating life time. Besides, there are a few studies utilizing detailed dynamic models of energy sources apart from first-degree linear equations based models that may fall short in presenting the exact dynamics of the related system. Thus, an "observe and focus" algorithm based optimization of a hybrid alternative energy system considering the power output degradation and detailed models of each hybrid system component is performed in this study. Related details presented within the paper can provide a new perspective in optimum sizing of such hybrid systems and may further be considered in future updates of famous sizing software programs commercially or freely available in websites of several laboratories or universities. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10479 / 10488
页数:10
相关论文
共 27 条
[1]   Optimization methods applied to renewable and sustainable energy: A review [J].
Banos, R. ;
Manzano-Agugliaro, F. ;
Montoya, F. G. ;
Gil, C. ;
Alcayde, A. ;
Gomez, J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04) :1753-1766
[2]   Sustainable energy systems: Role of optimization modeling techniques in power generation and supply-A review [J].
Bazmi, Aqeel Ahmed ;
Zahedi, Gholamreza .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (08) :3480-3500
[3]   Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP) [J].
Bilal, B. Ould ;
Sambou, V. ;
Ndiaye, P. A. ;
Kebe, C. M. F. ;
Ndongo, M. .
RENEWABLE ENERGY, 2010, 35 (10) :2388-2390
[4]   Control analysis of renewable energy system with hydrogen storage for residential applications [J].
Bilodeau, A. ;
Agbossou, K. .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :757-764
[5]   Particle swarm optimization for AC-coupling stand alone hybrid power systems [J].
Boonbumroong, U. ;
Pratinthong, N. ;
Thepa, S. ;
Jivacate, C. ;
Pridasawas, W. .
SOLAR ENERGY, 2011, 85 (03) :560-569
[6]   Strategic selection of suitable projects for hybrid solar-wind power generation systems [J].
Chen, Hsing Hung ;
Kang, He-Yau ;
Lee, Amy H. I. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (01) :413-421
[7]   Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions [J].
Diaf, S. ;
Notton, G. ;
Belhamel, M. ;
Haddadi, M. ;
Louche, A. .
APPLIED ENERGY, 2008, 85 (10) :968-987
[8]  
Dunlop ED, 2005, IEEE PHOT SPEC C FLO
[9]   A study of cost-optimized operation of a grid-parallel PEM fuel cell power plant [J].
El-Sharkh, M. Y. ;
Tanrioven, M. ;
Rahman, A. ;
Alam, M. S. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (03) :1104-1114
[10]   Optimum design of hybrid renewable energy systems: Overview of different approaches [J].
Erdinc, O. ;
Uzunoglu, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (03) :1412-1425