Computational design of genomic transcriptional networks with adaptation to varying environments

被引:10
作者
Carrera, Javier [1 ,2 ]
Elena, Santiago F. [2 ,3 ]
Jaramillo, Alfonso [1 ]
机构
[1] Univ Evry Val dEssonne, Inst Syst & Synthet Biol, Synth Bio Grp, CNRS,Genopole,UPS3509, F-91030 Evry, France
[2] Univ Politecn Valencia, Consejo Super Invest Cient, Inst Biol Mol & Celular Plantas, Valencia 46022, Spain
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
automated design; synthetic genomics; genome refactoring; evolutionary computation; REGULATORY NETWORKS; SYNTHETIC BIOLOGY; GENETIC NETWORKS; HIERARCHY; MODEL; TOOL;
D O I
10.1073/pnas.1200030109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcriptional profiling has been widely used as a tool for unveiling the coregulations of genes in response to genetic and environmental perturbations. These coregulations have been used, in a few instances, to infer global transcriptional regulatory models. Here, using the large amount of transcriptomic information available for the bacterium Escherichia coli, we seek to understand the design principles determining the regulation of its transcriptome. Combining transcriptomic and signaling data, we develop an evolutionary computational procedure that allows obtaining alternative genomic transcriptional regulatory network (GTRN) that still maintains its adaptability to dynamic environments. We apply our methodology to an E. coli GTRN and show that it could be rewired to simpler transcriptional regulatory structures. These rewired GTRNs still maintain the global physiological response to fluctuating environments. Rewired GTRNs contain 73% fewer regulated operons. Genes with similar functions and coordinated patterns of expression across environments are clustered into longer regulated operons. These synthetic GTRNs are more sensitive and show a more robust response to challenging environments. This result illustrates that the natural configuration of E. coli GTRN does not necessarily result from selection for robustness to environmental perturbations, but that evolutionary contingencies may have been important as well. We also discuss the limitations of our methodology in the context of the demand theory. Our procedure will be useful as a novel way to analyze global transcription regulation networks and in synthetic biology for the de novo design of genomes.
引用
收藏
页码:15277 / 15282
页数:6
相关论文
共 30 条
[1]   Predicting Cellular Growth from Gene Expression Signatures [J].
Airoldi, Edoardo M. ;
Huttenhower, Curtis ;
Gresham, David ;
Lu, Charles ;
Caudy, Amy A. ;
Dunham, Maitreya J. ;
Broach, James R. ;
Botstein, David ;
Troyanskaya, Olga G. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (01)
[2]  
Alon U, 2007, INTRO SYSTEMS BIOL D
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems [J].
Bashor, Caleb J. ;
Horwitz, Andrew A. ;
Peisajovich, Sergio G. ;
Lim, Wendell A. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 39, 2010, 39 :515-537
[5]   Rewiring of Transcriptional Regulatory Networks: Hierarchy, Rather than Connectivity, Better Reflects the Importance of Regulators [J].
Bhardwaj, Nitin ;
Kim, Philip M. ;
Gerstein, Mark B. .
SCIENCE SIGNALING, 2010, 3 (146)
[6]   A predictive model for transcriptional control of physiology in a free living cell [J].
Bonneau, Richard ;
Facciotti, Marc T. ;
Reiss, David J. ;
Schmid, Amy K. ;
Pan, Min ;
Kaur, Amardeep ;
Thorsson, Vesteinn ;
Shannon, Paul ;
Johnson, Michael H. ;
Bare, J. Christopher ;
Longabaugh, William ;
Vuthoori, Madhavi ;
Whitehead, Kenia ;
Madar, Aviv ;
Suzuki, Lena ;
Mori, Tetsuya ;
Chang, Dong-Eun ;
DiRuggiero, Jocelyne ;
Johnson, Carl H. ;
Hood, Leroy ;
Baliga, Nitin S. .
CELL, 2007, 131 (07) :1354-1365
[7]   Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions [J].
Carrera, Javier ;
Rodrigo, Guillermo ;
Jaramillo, Alfonso ;
Elena, Santiago F. .
GENOME BIOLOGY, 2009, 10 (09)
[8]   Towards the automated engineering of a synthetic genome [J].
Carrera, Javier ;
Rodrigo, Guillermo ;
Jaramillo, Alfonso .
MOLECULAR BIOSYSTEMS, 2009, 5 (07) :733-743
[9]   Model-based redesign of global transcription regulation [J].
Carrera, Javier ;
Rodrigo, Guillermo ;
Jaramillo, Alfonso .
NUCLEIC ACIDS RESEARCH, 2009, 37 (05)
[10]   Refactoring bacteriophage T7 [J].
Chan, Leon Y. ;
Kosuri, Sriram ;
Endy, Drew .
MOLECULAR SYSTEMS BIOLOGY, 2005, 1 (1) :2005.0018