On Para-Kenmotsu Manifolds

被引:15
|
作者
Zamkovoy, Simeon [1 ]
机构
[1] Univ Sofia St Kl Ohridski, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria
关键词
para-Kenmotsu manifolds; 3-dimensional para-Kenmotsu manifolds; locally phi-symmetric; manifolds of constant curvature; eta-parallel Ricci tensor; PARACONTACT;
D O I
10.2298/FIL1814971Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study para-Kenmotsu manifolds. We characterize this manifolds by tensor equations and study their properties. We are devoted to a study of eta-Einstein manifolds. We show that a locally conformally flat para-Kenmotsu manifold is a space of constant negative sectional curvature -1 and we prove that if a para-Kenmotsu manifold is a space of constant phi-para-holomorphic sectional curvature H, then it is a space of constant sectional curvature and H = - 1. Finally the object of the present paper is to study a 3-dimensional para-Kenmotsu manifold, satisfying certain curvature conditions. Among other, it is proved that any 3-dimensional para-Kenmotsu manifold with eta-parallel Ricci tensor is of constant scalar curvature and any 3-dimensional para-Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative sectional curvature -1.
引用
收藏
页码:4971 / 4980
页数:10
相关论文
共 50 条
  • [41] Conformal semi-slant submersions from Lorentzian para Kenmotsu manifolds
    Prasad, Rajendra
    Singh, Punit Kumar
    Kumar, Sushil
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (01) : 191 - 209
  • [42] φ-Trajectories in Kenmotsu manifolds
    Inoguchi, Jun-ichi
    Lee, Ji-Eun
    JOURNAL OF GEOMETRY, 2022, 113 (01)
  • [43] On the geometry of Kenmotsu manifolds
    Kirichenko, VF
    DOKLADY MATHEMATICS, 2001, 64 (02) : 230 - 232
  • [44] Generalized Kenmotsu Manifolds
    Vanli, Aysel Turgut
    Sari, Ramazan
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2016, 7 (04): : 311 - 328
  • [45] Solitons on Kenmotsu manifolds
    Shukla, Sushil
    Ojha, Ayush
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (05) : 1175 - 1183
  • [46] On φ-Recurrent Kenmotsu Manifolds
    De, Uday Chand
    Yildiz, Ahmet
    Yaliniz, A. Funda
    TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (01) : 17 - 25
  • [47] The critical point equation on Kenmotsu and almost Kenmotsu manifolds
    Patra, Dhriti Sundar
    Ghosh, Amalendu
    Bhattacharyya, Arindam
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2): : 85 - 99
  • [48] On invariant submanifolds of Kenmotsu manifolds
    De, U. C.
    Majhi, Pradip
    JOURNAL OF GEOMETRY, 2015, 106 (01) : 109 - 122
  • [49] 3-Kenmotsu Manifolds
    Attarchi, Hassan
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (03) : 320 - 325
  • [50] Harmonic Maps on Kenmotsu Manifolds
    Rehman, Najma Abdul
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (03): : 197 - 208