On Para-Kenmotsu Manifolds

被引:15
作者
Zamkovoy, Simeon [1 ]
机构
[1] Univ Sofia St Kl Ohridski, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria
关键词
para-Kenmotsu manifolds; 3-dimensional para-Kenmotsu manifolds; locally phi-symmetric; manifolds of constant curvature; eta-parallel Ricci tensor; PARACONTACT;
D O I
10.2298/FIL1814971Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study para-Kenmotsu manifolds. We characterize this manifolds by tensor equations and study their properties. We are devoted to a study of eta-Einstein manifolds. We show that a locally conformally flat para-Kenmotsu manifold is a space of constant negative sectional curvature -1 and we prove that if a para-Kenmotsu manifold is a space of constant phi-para-holomorphic sectional curvature H, then it is a space of constant sectional curvature and H = - 1. Finally the object of the present paper is to study a 3-dimensional para-Kenmotsu manifold, satisfying certain curvature conditions. Among other, it is proved that any 3-dimensional para-Kenmotsu manifold with eta-parallel Ricci tensor is of constant scalar curvature and any 3-dimensional para-Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative sectional curvature -1.
引用
收藏
页码:4971 / 4980
页数:10
相关论文
共 50 条
[31]   On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (φφ′)-holomorphic maps between them [J].
Erdem, S .
HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (01) :21-45
[32]   Geometry of Warped Product CR and Semi-Slant Submanifolds in Quasi-Para-Sasakian Manifolds [J].
Rahman, Shamsur ;
Haseeb, Abdul ;
Jamal, Nargis .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
[33]   On Anti-Invariant Semi-Riemannian Submersions from Lorentzian Para-Sasakian Manifolds [J].
Faghfouri, Morteza ;
Mashmouli, Sahar .
FILOMAT, 2018, 32 (10) :3465-3478
[34]   ON NORMAL ALMOST PARACONTACTMETRIC MANIFOLDS OF DIMENSION 3 [J].
Erken, I. Kupeli .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05) :777-788
[35]   On 3-dimensional generalized (κ, μ)-contact metric manifolds [J].
Shaikh, A. A. ;
Arslan, K. ;
Murathan, C. ;
Baishya, K. K. .
BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2007, 12 (01) :122-134
[36]   Locally φ-symmetric normal almost contact metric manifolds of dimension 3 [J].
De, U. C. ;
Yidiz, Ahmet ;
Yaliniz, A. Funda .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :723-727
[37]   ON (N(k),xi)-SEMI-RIEMANNIAN 3-MANIFOLDS [J].
Prakasha, D. G. ;
Nagaraja, H. G. ;
Somashekhara, G. .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32) :115-124
[38]   ON THREE-DIMENSIONAL N(k)-PARACONTACT METRIC MANIFOLDS AND RICCI SOLITONS [J].
De, U. C. ;
Deshmukh, S. ;
Mandal, K. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06) :1571-1583
[39]   Para-Contact Para-Complex Semi-Riemannian Submersions [J].
Gunduzalp, Yilmaz ;
Sahin, Bayram .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (01) :139-152
[40]   On locally φ-semisymmetric Sasakian manifolds [J].
Shaikh, Absos Ali ;
Mondal, Chandan Kumar ;
Ahmad, Helaluddin .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (04) :1156-1169