On Para-Kenmotsu Manifolds

被引:15
作者
Zamkovoy, Simeon [1 ]
机构
[1] Univ Sofia St Kl Ohridski, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria
关键词
para-Kenmotsu manifolds; 3-dimensional para-Kenmotsu manifolds; locally phi-symmetric; manifolds of constant curvature; eta-parallel Ricci tensor; PARACONTACT;
D O I
10.2298/FIL1814971Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study para-Kenmotsu manifolds. We characterize this manifolds by tensor equations and study their properties. We are devoted to a study of eta-Einstein manifolds. We show that a locally conformally flat para-Kenmotsu manifold is a space of constant negative sectional curvature -1 and we prove that if a para-Kenmotsu manifold is a space of constant phi-para-holomorphic sectional curvature H, then it is a space of constant sectional curvature and H = - 1. Finally the object of the present paper is to study a 3-dimensional para-Kenmotsu manifold, satisfying certain curvature conditions. Among other, it is proved that any 3-dimensional para-Kenmotsu manifold with eta-parallel Ricci tensor is of constant scalar curvature and any 3-dimensional para-Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative sectional curvature -1.
引用
收藏
页码:4971 / 4980
页数:10
相关论文
共 50 条
  • [21] ON phi-SYMMETRIC KENMOTSU MANIFOLDS WITH RESPECT TO QUARTER-SYMMETRIC METRIC CONNECTION
    Prakasha, D. G.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2011, 4 (01): : 88 - 96
  • [22] Generalized almost para-contact manifolds
    Sahin, Bayram
    Sahin, Fulya
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (10)
  • [23] On φ-T-Symmetric (ε)-Para Sasakian Manifolds
    Gupta, Punam
    THAI JOURNAL OF MATHEMATICS, 2019, 17 (02): : 343 - 357
  • [24] Curvature Properties of Quasi-Para-Sasakian Manifolds
    Erken, I. Kupeli
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2019, 12 (02): : 210 - 217
  • [25] Magnetic Frenet curves on para-Sasakian manifolds
    Bejan, Cornelia-Livia
    Binh, Tran Quoc
    Druta-Romaniuc, Simona-Luiza
    FILOMAT, 2023, 37 (05) : 1479 - 1496
  • [26] GRADIENT ALMOST PARA-RICCI-LIKE SOLITONS ON PARA-SASAKI-LIKE RIEMANNIAN Π-MANIFOLDS
    Manev, Hristo
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (04): : 486 - 494
  • [27] Para-Ricci-like Solitons with Vertical Potential on Para-Sasaki-like Riemannian π-Manifolds
    Manev, Hristo
    SYMMETRY-BASEL, 2021, 13 (12):
  • [28] Para-Sasaki-like Riemannian manifolds and new Einstein metrics
    Ivanov, Stefan
    Manev, Hristo
    Manev, Mancho
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [29] ON 3-DIMENSIONAL QUASI-PARA-SASAKIAN MANIFOLDS AND RICCI SOLITONS
    Prakasha, Doddabhadrappla Gowda
    Veeresha, Pundikala
    Venkatesha, Venkatesha
    Kumara, Huchchappa Aruna
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2022, 176 (02) : 245 - 254
  • [30] CLASSIFICATION OF THREE-DIMENSIONAL CONFORMALLY FLAT QUASI-PARA-SASAKIAN MANIFOLDS
    Erken, Irem Kupeli
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (03): : 489 - 503