A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy

被引:190
作者
Li, Hao [1 ]
Dong, Biqin [1 ,2 ]
Zhang, Zhen [2 ]
Zhang, Hao F. [1 ,3 ]
Sun, Cheng [2 ]
机构
[1] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Ophthalmol, Chicago, IL 60611 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
IN-VIVO; PRESSURE MEASUREMENTS; RESOLUTION; SENSORS;
D O I
10.1038/srep04496
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photoacoustic microscopy (PAM) does not rely on contrast agent to image the optical absorption contrast in biological tissue. It is uniquely suited for measuring several tissue physiological parameters, such as hemoglobin oxygen saturation, that would otherwise remain challenging. Researchers are designing new clinical diagnostic tools and multimodal microscopic systems around PAM to fully unleash its potential. However, the sizeable and opaque piezoelectric ultrasonic detectors commonly used in PAM impose a serious constraint. Our solution is a coverslip-style optically transparent ultrasound detector based on a polymeric optical micro-ring resonator (MRR) with a total thickness of 250 mm. It enables highly-sensitive ultrasound detection over a wide receiving angle with a bandwidth of 140 MHz, which corresponds to a photoacoustic saturation limit of 287 cm(-1), at an estimated noise-equivalent pressure (NEP) of 6.8 Pa. We also established a theoretical framework for designing and optimizing the MRR for PAM.
引用
收藏
页数:8
相关论文
共 54 条
[1]   High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber [J].
Alder, T ;
Stöhr, A ;
Heinzelmann, R ;
Jäger, D .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (08) :1016-1018
[2]   Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection [J].
Beard, PC ;
Pérennès, F ;
Mills, TN .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1999, 46 (06) :1575-1582
[3]  
Blackstock D. T., 2000, Fundamentals of Physical Acoustics
[4]   Two-dimensional pressure measurements with nanosecond time resolution [J].
Boneberg, J ;
Briaudeau, S ;
Demirplak, Z ;
Dobler, V ;
Leiderer, P .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (Suppl 1) :S557-S560
[5]  
Cai X, 2013, TISSUE ENG PART C-ME, V19, P196, DOI [10.1089/ten.tec.2012.0326, 10.1089/ten.TEC.2012.0326]
[6]   High-frequency ultrasound sensors using polymer microring resonators [J].
Chao, Chung-Yen ;
Ashkenazi, Shai ;
Huang, Sheng-Wen ;
O'Donnell, Matthew ;
Guo, L. Jay .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2007, 54 (05) :957-965
[7]   Broadband optical ultrasound sensor with a unique open-cavity structure [J].
Chow, Cohn M. ;
Zhou, Yun ;
Guo, Yunbo ;
Norris, Theodore B. ;
Wang, Xueding ;
Deng, Cheri X. ;
Ye, Jing Yong .
JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (01)
[8]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[9]   Polymer inverted-rib optical waveguide interferometric sensor for optoacoustic imaging [J].
Gallego, Daniel ;
Wang, Meng ;
Hiltunen, Jussi ;
Myllyla, Risto ;
Lamela, Horacio .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2012, 2012, 8223
[10]   Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry [J].
Gao, Liang ;
Zhang, Chi ;
Li, Chiye ;
Wang, Lihong V. .
APPLIED PHYSICS LETTERS, 2013, 102 (19)