Convergent algorithm based on progressive regularization for solving pseudomonotone variational inequalities

被引:13
作者
El Farouq, N [1 ]
机构
[1] Univ Clermont Ferrand, Toulouse, France
[2] CNRS, LAAS, F-31077 Toulouse, France
关键词
variational inequalities; generalized monotonicity; pseudomonotonicity; regularization; convergence of algorithms; decomposition;
D O I
10.1023/B:JOTA.0000025706.49562.08
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we extend the Moreau-Yosida regularization of monotone variational inequalities to the case of weakly monotone and pseudomonotone operators. With these properties, the regularized operator satisfies the pseudo-Dunn property with respect to any solution of the variational inequality problem. As a consequence, the regularized version of the auxiliary problem algorithm converges. In this case, when the operator involved in the variational inequality problem is Lipschitz continuous (a property stronger than weak monotonicity) and pseudomonotone, we prove the convergence of the progressive regularization algorithm introduced in Refs. 1, 2.
引用
收藏
页码:455 / 485
页数:31
相关论文
共 50 条
  • [41] A new extragradient method for pseudomonotone variational inequalities
    Noor, MA
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 299 - 304
  • [42] Variational inequalities and pseudomonotone functions: Some characterizations
    John, R
    GENERALIZED CONVEXITY, GENERALIZED MONOTONICITY: RECENT RESULTS, 1998, 27 : 291 - 301
  • [43] Three novel inertial explicit Tseng's extragradient methods for solving pseudomonotone variational inequalities
    Rehman, Habib Ur
    Kumam, Poom
    Ozdemir, Murat
    Argyros, Ioannis K.
    Kumam, Wiyada
    OPTIMIZATION, 2022, 71 (16) : 4697 - 4730
  • [44] Convergence theorems for solving a system of pseudomonotone variational inequalities using Bregman distance in Banach spaces
    Jolaoso, Lateef Olakunle
    Aphane, Maggie
    Raji, Musiliu Tayo
    Osinuga, Idowu Ademola
    Olajuwon, Bakai Ishola
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2022, 15 (04): : 561 - 588
  • [45] Convergence theorems for solving a system of pseudomonotone variational inequalities using Bregman distance in Banach spaces
    Lateef Olakunle Jolaoso
    Maggie Aphane
    Musiliu Tayo Raji
    Idowu Ademola Osinuga
    Bakai Ishola Olajuwon
    Bollettino dell'Unione Matematica Italiana, 2022, 15 : 561 - 588
  • [46] An extragradient algorithm for solving general nonconvex variational inequalities
    Noor, Muhammad Aslam
    APPLIED MATHEMATICS LETTERS, 2010, 23 (08) : 917 - 921
  • [47] Regularization of nonmonotone variational inequalities
    Konnov, IV
    Ali, MSS
    Mazurkevich, EO
    APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (03) : 311 - 330
  • [48] Regularization of Nonmonotone Variational Inequalities
    Igor V. Konnov
    M.S.S. Ali
    E.O. Mazurkevich
    Applied Mathematics and Optimization, 2006, 53 : 311 - 330
  • [49] Unified framework of extragradient-type methods for pseudomonotone variational inequalities
    Wang, YJ
    Xiu, NH
    Wang, CY
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (03) : 641 - 656
  • [50] Variational inequalities for (η,θ)-pseudomonotone operators in nonreflexive Banach spaces
    Lee, BS
    Lee, GM
    APPLIED MATHEMATICS LETTERS, 1999, 12 (05) : 13 - 17