Fiber-Optic Temperature Sensor Using a Fabry-Perot Cavity Filled With Gas of Variable Pressure

被引:21
作者
Lu, Yujie [1 ]
Han, Ming [1 ]
Tian, Jiajun [1 ,2 ]
机构
[1] Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA
[2] Harbin Inst Technol, Shenzhen Grad Sch, Coll Elect & Informat Engn, Shenzhen 518055, Peoples R China
基金
美国国家科学基金会;
关键词
Fiber-optic sensors; temperature measurement; microstructure fiber; Fabry-Perot interferometer; INTERFEROMETER;
D O I
10.1109/LPT.2014.2304297
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a high-temperature fiber-optic sensor based on measuring the spectral fringes of a Fabry-Perot (FP) cavity on a microstructure fiber (MF) when the gas pressure in the cavity is varied through the holes in the MF. Theoretical analysis shows that the absolute temperature can be deduced from the slope of the spectral shift versus pressure curve, which requires no calibration and is insensitive to the FP cavity length variations. For demonstration, we fabricated a miniature sensor whose FP cavity is formed by sandwiching a fuse-silica tube between a side-hole MF and a solid-core fiber. Using the holes in the MF as gas channels, the pressure in the FP cavity is controlled. The sensor was tested for operation above 1000 degrees C. Strain-insensitive temperature measurement was demonstrated at ambient temperature for a strain range up to 3600 mu epsilon.
引用
收藏
页码:757 / 760
页数:4
相关论文
共 13 条
[1]   Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings [J].
Adamovsky, Grigory ;
Lyuksyutov, Sergei F. ;
Mackey, Jeffrey R. ;
Floyd, Bertram M. ;
Abeywickrema, Ujitha ;
Fedin, Igor ;
Rackaitis, Mindaugas .
OPTICS COMMUNICATIONS, 2012, 285 (05) :766-773
[2]  
Childs P. R. N., 2001, PRACTICAL TEMPERATUR, P290
[3]   Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer [J].
Choi, Hae Young ;
Park, Kwan Seoh ;
Park, Seong Jun ;
Paek, Un-Chul ;
Lee, Byeong Ha ;
Choi, Eun Seo .
OPTICS LETTERS, 2008, 33 (21) :2455-2457
[4]   Refractive index of air: New equations for the visible and near infrared [J].
Ciddor, PE .
APPLIED OPTICS, 1996, 35 (09) :1566-1573
[5]   In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing [J].
Duan, D. W. ;
Rao, Y. J. ;
Wen, W. P. ;
Yao, J. ;
Wu, D. ;
Xu, L. C. ;
Zhu, T. .
ELECTRONICS LETTERS, 2011, 47 (06) :401-402
[6]   Fiber Bragg grating technology fundamentals and overview [J].
Hill, KO ;
Meltz, G .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) :1263-1276
[7]   Fiber grating sensors [J].
Kersey, AD ;
Davis, MA ;
Patrick, HJ ;
LeBlanc, M ;
Koo, KP ;
Askins, CG ;
Putnam, MA ;
Friebele, EJ .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) :1442-1463
[8]   Fiber-tip micro-cavity for temperature and transverse load sensing [J].
Ma, Jun ;
Ju, Jian ;
Jin, Long ;
Jin, Wei ;
Wang, Dongning .
OPTICS EXPRESS, 2011, 19 (13) :12418-12426
[9]   Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure [J].
Tian, Jiajun ;
Zhang, Qi ;
Fink, Thomas ;
Li, Hong ;
Peng, Wei ;
Han, Ming .
OPTICS LETTERS, 2012, 37 (22) :4672-4674
[10]   Strain and Temperature Sensing Characteristics of Single-Mode-Multimode-Single-Mode Structures [J].
Tripathi, Saurabh Mani ;
Kumar, Arun ;
Varshney, Ravi K. ;
Kumar, Y. Bala Pavan ;
Marin, Emmanuel ;
Meunier, Jean-Pierre .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (13) :2348-2356