The Korteweg-de Vries equation on the quarter plane with asymptotically t-periodic data via the Fokas method

被引:3
作者
Moon, Byungsoo [1 ]
Hwang, Guenbo [2 ,3 ]
机构
[1] Incheon Natl Univ, Dept Math, Incheon 22012, South Korea
[2] Daegu Univ, Dept Math, Gyongsan 38453, Gyeongbuk, South Korea
[3] Daegu Univ, Inst Basic Sci, Gyongsan 38453, Gyeongbuk, South Korea
关键词
Initial-boundary value problem; integrable systems; Korteweg-de Vries equation; Dirichlet to Neumann map; LONG-TIME ASYMPTOTICS; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD; FOCUSING NLS EQUATION; HALF-LINE; KDV EQUATION; NEUMANN MAP; GENERALIZED DIRICHLET; BOUNDARY-CONDITION; PDES;
D O I
10.3233/ASY-171452
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Korteweg-de Vries equation posed on the quarter plane with asymptotically t-periodic boundary data for large t > 0. We derive an expression for the Dirichlet to Neumann map to all orders in the perturbative expansion of a small epsilon > 0 in the case of the asymptotically periodic boundary data. More precisely, we show that if the unknown Neumann boundary data are asymptotically periodic for large t in the sense that u(x)(0, t) and u(xx)(0,t) tend to periodic functions (g) over tilde (1)(t) and (g) over tilde (2)(t) for large t, respectively, then the periodic functions (g) over tilde (1)(t) and (g) over tilde (2)(t) can be characterized in terms of the given asymptotically periodic Dirichlet boundary datum u(0, t). Moreover, we determine effectively the Fourier coefficients of the functions (g) over tilde (1)(t) and (g) over tilde (2)(t) by solving a certain recursive algebraic equations.
引用
收藏
页码:115 / 133
页数:19
相关论文
共 23 条