Quantitatively Characterized Crystallization Effect on Recombination Energy Loss in Non-Fullerene Organic Solar Cells

被引:18
作者
Chen, Zhi-Hao [1 ]
Bi, Peng-Qing [1 ]
Yang, Xiao-Yu [1 ]
Niu, Meng-Si [1 ]
Zhang, Kang-Ning [1 ]
Feng, Lin [1 ]
Hao, Xiao-Tao [1 ,2 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[2] Univ Melbourne, Sch Chem, ARC Ctr Excellence Exciton Sci, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
OPEN-CIRCUIT VOLTAGE; EFFICIENT; ACCEPTOR; DONOR; GENERATION;
D O I
10.1021/acs.jpcc.9b03572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recombination energy loss is the main impediment on improving the power conversion efficiency of organic solar cells (OSCs). The pernicious effect is usually induced by two dynamics, that is, the geminate recombination of nascent charge pairs soon after the exciton dissociation and nongeminate recombination of separated charges during their transportation. Both hinder achieving high open circuit voltage (V-OC). Here, we comprehensively investigated the relationship between crystallization and molecular recombination in a non-fullerene system of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))] (PBDB-T):((5Z,50Z)-5,50-(((4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b0]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadia-zole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothia-zolidin-4-one)) (O-IDTBR). Based on a quantitative characterization of crystallinity, it was found that the crystallization intensity ratio between components is the key factor to suppress recombination energy losses. The nongeminate recombination showed increased probability with enlarged variance of crystallinity between the donor and acceptor. The geminate recombination was proven to be restricted by the energetic disorder of the highest occupied molecular orbital and lowest unoccupied molecular orbital, as well as the phase separation induced by crystallization. The rational crystallization intensity ratio between donor/acceptor (D/A) components is vital in achieving minimum energy loss as well as best device performance. The results are favorable for comprehending the effects of crystallinity in charge transfer and charge transport dynamics and provide guidance for morphology and crystallinity optimization in non-fullerene OSCs.
引用
收藏
页码:12676 / 12683
页数:8
相关论文
共 37 条
[1]   Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages [J].
Baran, D. ;
Kirchartz, T. ;
Wheeler, S. ;
Dimitrov, S. ;
Abdelsamie, M. ;
Gorman, J. ;
Ashraf, R. S. ;
Holliday, S. ;
Wadsworth, A. ;
Gasparini, N. ;
Kaienburg, P. ;
Yan, H. ;
Amassian, A. ;
Brabec, C. J. ;
Durrant, J. R. ;
McCulloch, I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (12) :3783-3793
[2]   Charge-Carrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90% [J].
Bartelt, Jonathan A. ;
Lam, David ;
Burke, Timothy M. ;
Sweetnam, Sean M. ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (15)
[3]   Intrinsic non-radiative voltage losses in fullerene-based organic solar cells [J].
Benduhn, Johannes ;
Tvingstedt, Kristofer ;
Piersimoni, Fortunato ;
Ullbrich, Sascha ;
Fan, Yeli ;
Tropiano, Manuel ;
McGarry, Kathryn A. ;
Zeika, Olaf ;
Riede, Moritz K. ;
Douglas, Christopher J. ;
Barlow, Stephen ;
Marder, Seth R. ;
Neher, Dieter ;
Spoltore, Donato ;
Vandewal, Koen .
NATURE ENERGY, 2017, 2 (06)
[4]   Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells [J].
Bi, Pengqing ;
Xiao, Tong ;
Yang, Xiaoyu ;
Niu, Mengsi ;
Wen, Zhenchuan ;
Zhang, Kangning ;
Qin, Wei ;
So, Shu Kong ;
Lu, Guanghao ;
Hao, Xiaotao ;
Liu, Hong .
NANO ENERGY, 2018, 46 :81-90
[5]   Dual Forster resonance energy transfer effects in non-fullerene ternary organic solar cells with the third component embedded in the donor and acceptor [J].
Bi, Pengqing ;
Zheng, Fei ;
Yang, Xiaoyu ;
Niu, Mengsi ;
Feng, Lin ;
Qin, Wei ;
Hao, Xiaotao .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) :12120-12130
[6]   Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells [J].
Blakesley, James C. ;
Neher, Dieter .
PHYSICAL REVIEW B, 2011, 84 (07)
[7]   Charge transfer at polymer-electrode interfaces: The effect of energetic disorder and thermal injection on band bending and open-circuit voltage [J].
Blakesley, James C. ;
Greenham, Neil C. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (03)
[8]   Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells [J].
Burke, Timothy M. ;
Sweetnam, Sean ;
Vandewal, Koen ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (11)
[9]   Chlorination of Side Chains: A Strategy for Achieving a High Open Circuit Voltage Over 1.0 V in Benzo[1,2-b:4,5-b′]dithiophene-Based Non-Fullerene Solar Cells [J].
Chao, Pengjie ;
Mu, Zhao ;
Wang, Huan ;
Mo, Daize ;
Chen, Hui ;
Meng, Hong ;
Chen, Wei ;
He, Feng .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (05) :2365-2372
[10]   Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells [J].
Chen, Xian-Kai ;
Ravva, Mahesh Kumar ;
Li, Hong ;
Ryno, Sean M. ;
Bredas, Jean-Luc .
ADVANCED ENERGY MATERIALS, 2016, 6 (24)