Vanishing spin stiffness in the spin-1/2 Heisenberg chain for any nonzero temperature

被引:21
|
作者
Carmelo, J. M. P. [1 ,2 ,3 ,4 ]
Prosen, T. [5 ]
Campbell, D. K. [6 ]
机构
[1] Univ Minho, Dept Phys, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Phys, P-4169007 Oporto, Portugal
[3] Univ Porto, P-4169007 Oporto, Portugal
[4] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[5] Univ Ljubliana, FMF, Dept Phys, Ljubljana 1000, Slovenia
[6] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 16期
关键词
TWISTED BOUNDARY-CONDITIONS; FINITE TEMPERATURES; CONSERVATION-LAWS; HUBBARD RINGS; DRUDE WEIGHT; BETHE-ANSATZ; MODEL; SYSTEMS; ERGODICITY; TRANSPORT;
D O I
10.1103/PhysRevB.92.165133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Whether at the zero spin density m = 0 and finite temperaturesT > 0 the spin stiffness of the spin-1/2 XXX chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m = 0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m(2)L in the thermodynamic limit of chain length L -> infinity, for any finite, nonzero temperature, which implies the absence of ballistic transport for T > 0 for m = 0. Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999)] leads to the exact stiffness values at finite temperatureT > 0 for models whose stiffness is finite at T = 0, similar to the spin stiffness of the spin-1/2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Dynamically Dominant Excitations of String Solutions in the Spin-1/2 Antiferromagnetic Heisenberg Chain in a Magnetic Field
    Kohno, Masanori
    PHYSICAL REVIEW LETTERS, 2009, 102 (03)
  • [22] Emergent multipolar spin correlations in a fluctuating spiral: The frustrated ferromagnetic spin-1/2 Heisenberg chain in a magnetic field
    Sudan, Julien
    Luescher, Andreas
    Laeuchli, Andreas M.
    PHYSICAL REVIEW B, 2009, 80 (14)
  • [23] Spin-1/2 Ising-Heisenberg distorted diamond chain with antiferromagnetic Ising and ferromagnetic Heisenberg interactions
    Lisnyi, B. M.
    CONDENSED MATTER PHYSICS, 2024, 27 (02)
  • [24] Spin excitations in nanographene-based antiferromagnetic spin-1/2 Heisenberg chains
    Zhao, Chenxiao
    Yang, Lin
    Henriques, Joao C. G.
    Ferri-Cortes, Mar
    Catarina, Goncalo
    Pignedoli, Carlo A.
    Ma, Ji
    Feng, Xinliang
    Ruffieux, Pascal
    Fernandez-Rossier, Joaquin
    Fasel, Roman
    NATURE MATERIALS, 2025, : 722 - 727
  • [25] Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Rosenberg, E.
    Andersen, T. I.
    Samajdar, R.
    Petukhov, A.
    Hoke, J. C.
    Abanin, D.
    Bengtsson, A.
    Drozdov, I. K.
    Erickson, C.
    Klimov, P. V.
    Mi, X.
    Morvan, A.
    Neeley, M.
    Neill, C.
    Acharya, R.
    Allen, R.
    Anderson, K.
    Ansmann, M.
    Arute, F.
    Arya, K.
    Asfaw, A.
    Atalaya, J.
    Bardin, J. C.
    Bilmes, A.
    Bortoli, G.
    Bourassa, A.
    Bovaird, J.
    Brill, L.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burger, T.
    Burkett, B.
    Bushnell, N.
    Campero, J.
    Chang, H. -S.
    Chen, Z.
    Chiaro, B.
    Chik, D.
    Cogan, J.
    Collins, R.
    Conner, P.
    Courtney, W.
    Crook, A. L.
    Curtin, B.
    Debroy, D. M.
    Barba, A. Del Toro
    Demura, S.
    Di Paolo, A.
    Dunsworth, A.
    SCIENCE, 2024, 384 (6691) : 48 - 53
  • [26] Absorption of microwaves by the one-dimensional spin-1/2 Heisenberg-Ising magnet
    Brockmann, Michael
    Goehmann, Frank
    Karbach, Michael
    Kluemper, Andreas
    Weisse, Alexander
    PHYSICAL REVIEW B, 2012, 85 (13):
  • [27] Spin-1/2 Heisenberg antiferromagnet on an anisotropic kagome lattice
    Li, P. H. Y.
    Bishop, R. F.
    Campbell, C. E.
    Farnell, D. J. J.
    Goetze, O.
    Richter, J.
    PHYSICAL REVIEW B, 2012, 86 (21):
  • [28] Compensation temperature of the two-dimension mixed spin-1 and spin-3/2 anisotropic Heisenberg ferrimagnet
    Liu, Yu
    Hu, Ai-Yuan
    Wang, Huai-Yu
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 411 : 55 - 61
  • [29] Magnetization of the spin-1/2 Heisenberg antiferromagnet on the triangular lattice
    Li, Qian
    Li, Hong
    Zhao, Jize
    Luo, Hong-Gang
    Xie, Z. Y.
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [30] Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain
    Scheie, A.
    Sherman, N. E.
    Dupont, M.
    Nagler, S. E.
    Stone, M. B.
    Granroth, G. E.
    Moore, J. E.
    Tennant, D. A.
    NATURE PHYSICS, 2021, 17 (06) : 726 - +