Vanishing spin stiffness in the spin-1/2 Heisenberg chain for any nonzero temperature

被引:21
|
作者
Carmelo, J. M. P. [1 ,2 ,3 ,4 ]
Prosen, T. [5 ]
Campbell, D. K. [6 ]
机构
[1] Univ Minho, Dept Phys, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Phys, P-4169007 Oporto, Portugal
[3] Univ Porto, P-4169007 Oporto, Portugal
[4] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[5] Univ Ljubliana, FMF, Dept Phys, Ljubljana 1000, Slovenia
[6] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 16期
关键词
TWISTED BOUNDARY-CONDITIONS; FINITE TEMPERATURES; CONSERVATION-LAWS; HUBBARD RINGS; DRUDE WEIGHT; BETHE-ANSATZ; MODEL; SYSTEMS; ERGODICITY; TRANSPORT;
D O I
10.1103/PhysRevB.92.165133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Whether at the zero spin density m = 0 and finite temperaturesT > 0 the spin stiffness of the spin-1/2 XXX chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m = 0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m(2)L in the thermodynamic limit of chain length L -> infinity, for any finite, nonzero temperature, which implies the absence of ballistic transport for T > 0 for m = 0. Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999)] leads to the exact stiffness values at finite temperatureT > 0 for models whose stiffness is finite at T = 0, similar to the spin stiffness of the spin-1/2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Dynamical spin structure factor for the anisotropic spin-1/2 heisenberg chain
    Pereira, R. G.
    Sirker, J.
    Caux, J. -S.
    Hagemans, R.
    Maillet, J. M.
    White, S. R.
    Affleck, I.
    PHYSICAL REVIEW LETTERS, 2006, 96 (25)
  • [2] An effective spin-1 Heisenberg chain in coupled cavities
    Zhou, Ling
    Yan, Wei-Bin
    Zhao, Xin-Yu
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (06)
  • [3] Full counting statistics in the spin-1/2 Heisenberg XXZ chain
    Collura, Mario
    Essler, Fabian H. L.
    Groha, Stefan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (41)
  • [4] Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain
    Strecka, Jozef
    Richter, Johannes
    Derzhko, Oleg
    Verkholyak, Taras
    Karlova, Katarina
    PHYSICA B-CONDENSED MATTER, 2018, 536 : 364 - 368
  • [5] Exact Calculation of Correlation Functions for Spin-1/2 Heisenberg Chain
    Shiroishi, Masahiro
    Takahashi, Minoru
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74
  • [6] Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1/2 Chain
    Ilievski, Enej
    Medenjak, Marko
    Prosen, Tomaz
    PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [7] Magnetism and thermodynamics of spin-(1/2,1) decorated Heisenberg chain with spin-1 pendants
    Gong, Shou-Shu
    Li, Wei
    Zhao, Yang
    Su, Gang
    PHYSICAL REVIEW B, 2010, 81 (21)
  • [8] Exact asymptotic correlation functions of bilinear spin operators of the Heisenberg antiferromagnetic spin-1/2 chain
    Vekua, T.
    Sun, G.
    PHYSICAL REVIEW B, 2016, 94 (01)
  • [9] Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain
    Fagotti, Maurizio
    Collura, Mario
    Essler, Fabian H. L.
    Calabrese, Pasquale
    PHYSICAL REVIEW B, 2014, 89 (12):
  • [10] Tripartite quantum correlations in the renormalized space of Heisenberg-Ising spin-1/2 chain
    Khan, Salman
    Khan, Kalimullah
    PHYSICA B-CONDENSED MATTER, 2018, 545 : 289 - 296