Time evolution of negative binomial optical field in a diffusion channel

被引:3
作者
Liu Tang-Kun [1 ]
Wu Pan-Pan [1 ]
Shan Chuan-Jia [1 ]
Liu Ji-Bing [1 ]
Fan Hong-Yi [2 ]
机构
[1] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi 435002, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
negative binomial optical field; time evolution; diffusion channel; integration within an ordered product (IWOP) of operators; STATE;
D O I
10.1088/1674-1056/24/9/090302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.
引用
收藏
页数:4
相关论文
共 10 条
[1]   NEGATIVE BINOMIAL STATES OF THE FIELD-OPERATOR REPRESENTATION AND PRODUCTION BY STATE REDUCTION IN OPTICAL PROCESSES [J].
AGARWAL, GS .
PHYSICAL REVIEW A, 1992, 45 (03) :1787-1792
[2]  
Carmichael H.J., 1999, Statistical methods in quantum optics: Master equations and Fokker-Plank equations, DOI 10.1007/978-3-662-03875-8
[3]   Binomial theorem involving Hermite polynomials and negative-binomial theorem involving Laguerre polynomials [J].
Fan Hong-Yi ;
Lou Sen-Yue ;
Pan Xiao-Yin ;
Da Cheng .
ACTA PHYSICA SINICA, 2013, 62 (24) :240301
[4]   A new optical field state as an output of diffusion channel when the input being number state [J].
Fan HongYi ;
Lou SenYue ;
Pan XiaoYin ;
Hu LiYun .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (09) :1649-1653
[5]   Connection of a type of q-deformed binomial state with q-spin coherent states [J].
Hong-yi, Fan ;
Si-cong, Jing .
Physical Review A. Atomic, Molecular, and Optical Physics, 1994, 50 (2 pt B)
[6]   Operator ordering in quantum optics theory and the development of Dirac's symbolic method [J].
Fan, HY .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (04) :R147-R163
[7]   Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations [J].
Fan, HY ;
Lu, HL ;
Fan, Y .
ANNALS OF PHYSICS, 2006, 321 (02) :480-494
[8]   RELATIONSHIP BETWEEN NEGATIVE BINOMIAL STATE AND SU(1,1) COHERENT-STATE AND ITS Q-DEFORMED GENERALIZATION [J].
FAN, HY ;
JING, SC .
COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 24 (03) :377-380
[9]   Master equation describing the diffusion process for a coherent state [J].
Liu Tang-Kun ;
Shan Chuan-Jia ;
Liu Ji-Bing ;
Fan Hong-Yi .
CHINESE PHYSICS B, 2014, 23 (03)
[10]  
Orszag M., 2000, ADV TEXTS PHYS