Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau

被引:21
作者
Chen, Yunpeng [1 ,2 ]
de Ridder, Sjoerd A. L. [1 ]
Rost, Sebastian [1 ]
Guo, Zhen [2 ,3 ]
Wu, Xiaoyang [2 ]
Chen, Yongshun [2 ,3 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England
[2] Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab Guangzho, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
eikonal tomography; physics informed neural network; machine learning; surface waves; Tibet; ChinArray; ACTIVE DEFORMATION; INVERSION;
D O I
10.1029/2022GL099053
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We present a novel eikonal tomography approach using physics-informed neural networks (PINNs) for Rayleigh wave phase velocities based on the eikonal equation. The PINN eikonal tomography (pinnET) neural network utilizes deep neural networks as universal function approximators and extracts traveltimes and velocities of the medium during the optimization process. Whereas classical eikonal tomography uses a generic non-physics based interpolation and regularization step to reconstruct traveltime surfaces, optimizing the network parameters in pinnET means solving a physics constrained traveltime surface reconstruction inversion tackling measurement noise and satisfying physics. We demonstrate this approach by applying it to 25 s surface wave data from ChinArray II sampling the northeastern Tibetan plateau. We validate our results by comparing them to results from conventional eikonal tomography in the same area and find good agreement.
引用
收藏
页数:9
相关论文
共 46 条
[1]   KINEMATIC MODEL OF ACTIVE DEFORMATION IN CENTRAL-ASIA [J].
AVOUAC, JP ;
TAPPONNIER, P .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (10) :895-898
[2]   PINNeik: Eikonal solution using physics-informed neural networks [J].
bin Waheed, Umair ;
Haghighat, Ehsan ;
Alkhalifah, Tariq ;
Song, Chao ;
Hao, Qi .
COMPUTERS & GEOSCIENCES, 2021, 155
[3]   Transfer learning based multi-fidelity physics informed deep neural network [J].
Chakraborty, Souvik .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
[4]  
Clark MK, 2000, GEOLOGY, V28, P703, DOI 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO
[5]  
2
[6]  
De Ridder S., 2011, AGU FALL M, V2011
[7]   Full wavefield inversion of ambient seismic noise [J].
de Ridder, S. A. L. ;
Maddison, J. R. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 215 (02) :1215-1230
[8]   Elliptical-anisotropic eikonal phase velocity tomography [J].
de Ridder, S. A. L. ;
Biondi, B. L. ;
Nichols, D. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (03) :758-764
[9]   Active deformation of Asia: From kinematics to dynamics [J].
England, P ;
Molnar, P .
SCIENCE, 1997, 278 (5338) :647-650
[10]   Surface wave eikonal tomography in heterogeneous media using exploration data [J].
Gouedard, Pierre ;
Yao, Huajian ;
Ernst, Fabian ;
van der Hilst, Robert D. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 191 (02) :781-788