Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification

被引:40
作者
Luo, Chao [1 ]
Wang, Xingyuan [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2013年 / 350卷 / 09期
基金
中国国家自然科学基金;
关键词
LAG SYNCHRONIZATION; CHAOTIC SYSTEMS; PHASE;
D O I
10.1016/j.jfranklin.2013.06.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a novel synchronization scheme is proposed to achieve hybrid modified function projective synchronization (HMFPS) in two different dimensional complex nonlinear systems with fully unknown parameters. In the complex space, the response system are asymptotically synchronized up to the different order's drive system by the state transformation with a scaling function matrix, and all of unknown parameters in both drive and response systems are achieved to be identified. Based on the Lyapunov stability theory, an adaptive controller and updated laws of parameters are developed. Respectively on the ways of increased order and reduced order, the corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2646 / 2663
页数:18
相关论文
共 32 条
[1]   Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1908-1920
[2]   Cooperative behavior of a chain of synaptically coupled chaotic neurons [J].
Bazhenov, M ;
Huerta, R ;
Rabinovich, MI ;
Sejnowski, T .
PHYSICA D, 1998, 116 (3-4) :392-400
[3]   Robust function projective synchronization of two different chaotic systems with unknown parameters [J].
Du, Hongyue ;
Li, Feng ;
Meng, Guangshi .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10) :2782-2794
[4]   A general method for modified function projective lag synchronization in chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Lue, Ning .
PHYSICS LETTERS A, 2010, 374 (13-14) :1493-1496
[5]   Function projective synchronization in coupled chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong ;
Ling, Mingxiang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :705-712
[6]   Projective synchronization between two different time-delayed chaotic systems using active control approach [J].
Feng, Cun-Fang .
NONLINEAR DYNAMICS, 2010, 62 (1-2) :453-459
[7]   THE COMPLEX LORENTZ EQUATIONS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1982, 4 (02) :139-163
[8]   Reduced-order synchronization of chaotic systems with parameters unknown [J].
Ho, MC ;
Hung, YC ;
Liu, ZY ;
Jiang, IM .
PHYSICS LETTERS A, 2006, 348 (3-6) :251-259
[9]  
Kiselev A. D., 1998, Journal of Physical Studies, V2, P30
[10]   A stochastic complex model with random imaginary noise [J].
Lang, RongLing .
NONLINEAR DYNAMICS, 2010, 62 (03) :561-565