A Conserved Central Region of Yeast Ada2 Regulates the Histone Acetyltransferase Activity of Gcn5 and Interacts with Phospholipids

被引:12
作者
Hoke, Stephen M. T. [1 ]
Genereaux, Julie [1 ]
Liang, Gaoyang [1 ]
Brandl, Christopher J. [1 ]
机构
[1] Univ Western Ontario, Dept Biochem, Schulich Sch Med & Dent, London, ON N6A 5C1, Canada
基金
加拿大健康研究院;
关键词
transcription; yeast; Ada2; SAGA complex; phospholipid binding;
D O I
10.1016/j.jmb.2008.09.088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SAGA (Spt-Ada-Gen5 acetyltransferase) complex of Saccharomyces cerevisiae contains more than 20 components that acetylate and deubiquitylate nucleosomal histones. Its acetyltransferase, Gcn5, preferentially acetylates histones H3 and H2B and is regulated through interactions with Ada2 and Ngg1/Ada3. Sequence alignments of Ada2 homologs indicate a conserved similar to 120-amino-acid-residue central region. To examine the function of this region, we constructed ada2 alleles with mutations of clustered conserved residues. One of these alleles, ada2-RLR (R211S, L212A, and R215A), resulted in an approximately threefold reduction in transcriptional activation of the PHO5 gene and growth changes that parallel deletion of ada2. Microarray analyses further revealed that ada2-RLR alters expression of a subset of those genes affected by deletion of ada2. Indicative of Ada2-RLR affecting Gcn5 function, Ada2-RLR resulted in a decrease in Gcn5-mediated histone acetylation in vitro to a level approximately 40% that with wild-type Ada2. In addition, in vivo acetylation of K16 of histone H2B was almost totally eliminated at Ada2-regulated promoters in the ada2-RLR strain, while acetylation of K9 and K18 of histone H3 was reduced to approximately 40% of wild-type levels. We also show that the central region of Ada2 interacts with phospholipids. Since phosphatidylserine binding paralleled Ada2 function, we suggest that lipid binding may play a role in the function or regulation of the SAGA complex. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:743 / 755
页数:13
相关论文
共 40 条
[1]  
AUSUBEL FM, 1998, PROTOCOLS MOL BIOL
[2]   Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation [J].
Balasubramanian, R ;
Pray-Grant, MG ;
Selleck, W ;
Grant, PA ;
Tan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7989-7995
[3]   In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer [J].
Bhaumik, SR ;
Raha, T ;
Aiello, DP ;
Green, MR .
GENES & DEVELOPMENT, 2004, 18 (03) :333-343
[4]   CHARACTERIZATION OF NGG1, A NOVEL YEAST GENE REQUIRED FOR GLUCOSE REPRESSION OF GAL4P-REGULATED TRANSCRIPTION [J].
BRANDL, CJ ;
FURLANETTO, AM ;
MARTENS, JA ;
HAMILTON, KS .
EMBO JOURNAL, 1993, 12 (13) :5255-5265
[5]   Recruitment of HAT complexes by direct activator interactions with the ATM-related tra1 subunit [J].
Brown, CE ;
Howe, L ;
Sousa, K ;
Alley, SC ;
Carrozza, MJ ;
Tan, S ;
Workman, JL .
SCIENCE, 2001, 292 (5525) :2333-2337
[6]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[7]   SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope [J].
Cabal, Ghislain G. ;
Genovesio, Auguste ;
Rodriguez-Navarro, Susana ;
Zimmer, Christophe ;
Gadal, Olivier ;
Lesne, Annick ;
Buc, Henri ;
Feuerbach-Fournier, Frank ;
Olivo-Marin, Jean-Christophe ;
Hurt, Eduard C. ;
Nehrbass, Ulf .
NATURE, 2006, 441 (7094) :770-773
[8]  
Candau R, 1996, J BIOL CHEM, V271, P5237
[9]  
Candau R, 1996, MOL CELL BIOL, V16, P593
[10]   Global analysis of protein expression in yeast [J].
Ghaemmaghami, S ;
Huh, W ;
Bower, K ;
Howson, RW ;
Belle, A ;
Dephoure, N ;
O'Shea, EK ;
Weissman, JS .
NATURE, 2003, 425 (6959) :737-741