Tethered Semiflexible Polymer under Large Amplitude Oscillatory Shear

被引:7
|
作者
Lamura, Antonio [1 ]
Winkler, Roland G. [2 ]
机构
[1] CNR, Ist Applicaz Calcolo, Via Amendola 122-D, I-70126 Bari, Italy
[2] Forschungszentrum Julich, Inst Adv Simulat, Theoret Soft Matter & Biophys, D-52425 Julich, Germany
关键词
mesoscale simulations; nonequilibrium simulations; LAOS; polymer dynamics; MULTIPARTICLE COLLISION DYNAMICS; BROWNIAN DYNAMICS; HYDRODYNAMIC INTERACTION; RHEOLOGICAL PROPERTIES; EXCLUDED-VOLUME; FLOW; SIMULATIONS; CHAINS; DNA; MOLECULES;
D O I
10.3390/polym11040737
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The properties of a semiflexible polymer with fixed ends exposed to oscillatory shear flow are investigated by simulations. The two-dimensionally confined polymer is modeled as a linear bead-spring chain, and the interaction with the fluid is described by the Brownian multiparticle collision dynamics approach. For small shear rates, the tethering of the ends leads to a more-or-less linear oscillatory response. However, at high shear rates, we found a strongly nonlinear reaction, with a polymer (partially) wrapped around the fixation points. This leads to an overall shrinkage of the polymer. Dynamically, the location probability of the polymer center-of-mass position is largest on a spatial curve resembling a limacon, although with an inhomogeneous distribution. We found shear-induced modifications of the normal-mode correlation functions, with a frequency doubling at high shear rates. Interestingly, an even-odd asymmetry for the Cartesian components of the correlation functions appears, with rather similar spectra for odd x- and even y-modes and vice versa. Overall, our simulations yielded an intriguing nonlinear behavior of tethered semiflexible polymers under oscillatory shear flow.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Large amplitude oscillatory shear (LAOS) behavior of chocolates of different compositions
    Sandoval, Aleida J.
    Fernandez, Mercedes
    Sanz, Oihane
    Santamaria, Antxon
    Penott-Chang, Evis
    Mueller, Alejandro J.
    JOURNAL OF RHEOLOGY, 2022, 66 (05) : 859 - 879
  • [32] Large Amplitude Oscillatory Shear From Viscoelastic Model With Stress Relaxation
    Garinei, Alberto
    Castellani, Francesco
    Astolfi, Davide
    Pucci, Edvige
    Scappaticci, Lorenzo
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2017, 84 (12):
  • [33] Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
    Randy H. Ewoldt
    Peter Winter
    Jason Maxey
    Gareth H. McKinley
    Rheologica Acta, 2010, 49 : 191 - 212
  • [34] Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
    Ewoldt, Randy H.
    Winter, Peter
    Maxey, Jason
    McKinley, Gareth H.
    RHEOLOGICA ACTA, 2010, 49 (02) : 191 - 212
  • [35] Rheological behavior of water-clay suspensions under large amplitude oscillatory shear
    Ettehadi, Ali
    Tezcan, Meltem
    Altun, Gursat
    RHEOLOGICA ACTA, 2020, 59 (09) : 665 - 683
  • [36] Microscopic signatures of yielding in concentrated nanoemulsions under large-amplitude oscillatory shear
    Rogers, Michael C.
    Chen, Kui
    Pagenkopp, Matthew J.
    Mason, Thomas G.
    Narayanan, Suresh
    Harden, James L.
    Leheny, Robert L.
    PHYSICAL REVIEW MATERIALS, 2018, 2 (09):
  • [37] Nonlinear viscoelastic behavior of aqueous foam under large amplitude oscillatory shear flow
    Vishal, Badri
    Ghosh, Pallab
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2018, 30 (03) : 147 - 159
  • [38] Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow
    Hyun, K
    Nam, JG
    Wilhelm, M
    Ahn, KH
    Lee, SJ
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2003, 15 (02) : 97 - 105
  • [39] Shear Banding of Soft Glassy Materials in Large Amplitude Oscillatory Shear
    Radhakrishnan, Rangarajan
    Fielding, Suzanne M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (18)
  • [40] Quantitative investigation on the nonlinear viscoelasticity of magnetorheological gel under large amplitude oscillatory shear
    Mao, Runsong
    Wang, Xinjie
    Cai, Shibo
    Zhang, Guang
    Wang, Jiong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 655