The Gilbert arborescence problem

被引:1
作者
Volz, M. G. [1 ]
Brazil, M. [2 ]
Ras, C. J. [2 ]
Swanepoel, K. J. [3 ]
Thomas, D. A. [4 ]
机构
[1] TSG Consulting, Melbourne, Vic 3000, Australia
[2] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[3] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
[4] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
关键词
Gilbert network; minimum-cost network; network flows; Steiner tree; COMMUNICATION-NETWORKS; STEINER; SPACES; TREES;
D O I
10.1002/net.21475
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the problem of designing a minimum-cost flow network interconnecting n sources and a single sink, each with known locations in a normed space and with associated flow demands. The network may contain any finite number of additional unprescribed nodes from the space; these are known as the Steiner points. For concave increasing cost functions, a minimum-cost network of this sort has a tree topology, and hence can be called a Minimum Gilbert Arborescence (MGA). We characterize the local topological structure of Steiner points in MGAs, showing, in particular, that for a wide range of metrics, and for some typical real-world cost functions, the degree of each Steiner point is 3. (c) 2012 Wiley Periodicals, Inc. NETWORKS, 2013
引用
收藏
页码:238 / 247
页数:10
相关论文
共 50 条
  • [21] The push tree problem
    Havet, F
    NETWORKS, 2004, 44 (04) : 281 - 291
  • [22] On the open immersion problem
    Coltoiu, Mihnea
    Joita, Cezar
    MATHEMATISCHE ANNALEN, 2013, 356 (03) : 1203 - 1211
  • [23] On Rancin's problem
    Bella, Angelo
    Dow, Alan
    TOPOLOGY AND ITS APPLICATIONS, 2019, 268
  • [24] On the complexity of the Steiner problem
    Brazil, M
    Thomas, DA
    Weng, JF
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2000, 4 (02) : 187 - 195
  • [25] On the Complexity of the Steiner Problem
    M. Brazil
    D.A. Thomas
    J.F. Weng
    Journal of Combinatorial Optimization, 2000, 4 : 187 - 195
  • [26] On the Terminal Connection Problem
    de Melo, Alexsander A.
    de Figueiredo, Celina M. H.
    Souza, Ueverton S.
    SOFSEM 2021: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2021, 12607 : 278 - 292
  • [27] Eigenvalue problem associated with nonhomogeneous integro-differential operators Eigenvalue problem
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (01) : 47 - 64
  • [28] A Gravitational Facility Location Problem Based on Prize-Collecting Traveling Salesman Problem
    Ma Yunfeng
    Li Lu
    Yang Jun
    2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS (ICAL), 2012, : 511 - 516
  • [29] The repeater tree construction problem
    Bartoschek, C.
    Held, S.
    Massberg, J.
    Rautenbach, D.
    Vygen, J.
    INFORMATION PROCESSING LETTERS, 2010, 110 (24) : 1079 - 1083
  • [30] The Balanced Minimum Evolution Problem
    Catanzaro, Daniele
    Labbe, Martine
    Pesenti, Raffaele
    Salazar-Gonzalez, Juan-Jose
    INFORMS JOURNAL ON COMPUTING, 2012, 24 (02) : 276 - 294