Phase and microstructural evolution of Ir-Si binary alloys with fcc/silicide structure

被引:18
作者
Sha, JB
Yamabe-Mitarai, Y
机构
[1] Natl Inst Mat Sci, High Temp Mat Grp, Tsukuba, Ibaraki 3050047, Japan
[2] Bei Hang Univ, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
关键词
multiphase intermetallics; phase diagram; mechanical properties at ambient temperature; microstructure;
D O I
10.1016/j.intermet.2005.11.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To search hardening approach or new probable phases benefiting to high temperature behavior of Ir-based superalloys, Ir alloyed with Si was employed. Investigations on phase and microstructural evolution of a series of Ir-xSi (x=2.5, 5, 15, 20, 30, 36 and 45 mol%) binary alloys were carried out by XRD, EPMA and SEM analysis. A schematic plot of the Ir-Si binary diagram with the nominal Si content ranging from 0 to 50 mol% was primarily drafted. Room temperature mechanical properties, the Vicker hardness and Young's modulus, of bulk material or each kind of phases were also measured. Researches reveal that with Si addition up to 50 mol%, the microstructures are respectively composed of primary Ir solid solution fcc+peritectic Ir3Si silicide (nominal Si content: 0-25 mol%), primary Ir3Si+eutectoid silicide (Si: 25-33.3 mol%), Ir3Si2+eutectoid silicide (Si: 33.3-40 mol%) and primary IrSi+Ir3Si2 silicide(Si: 40-50 mol%). With plastic characteristic, the fcc phase has the low Vickers hardness and Young's modulus, while both of the silicides are high and the silicides behave brittle. For the high temperature applications over 1400 degrees C, Ir-based alloys with Si dropping must avoid the appearance of any kind of Ir/Si silicides in microstructure because the melting points of silicides (Ir3Si, Ir2Si and Ir3Si2) are close to 1400 degrees C; instead, solid solution hardening on Ir by Si is recommended. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:672 / 684
页数:13
相关论文
共 32 条
[1]   Refractory metal intermetallic in-situ composites for aircraft engines [J].
Bewlay, BP ;
Lewandowksi, JJ ;
Jackson, MR .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1997, 49 (08) :44-+
[2]   SOLID-SOLUTION HARDENING IN TERNARY NI-Y(Y, CO, PD, FE)-NB ALLOYS [J].
CHOI, G ;
SHINODA, T ;
MISHIMA, Y ;
SUZUKI, T .
ISIJ INTERNATIONAL, 1990, 30 (09) :780-785
[3]   SOLID-SOLUTION HARDENING IN THE NI-40AT-PERCENT CO-X TERNARY ALLOYS [J].
CHOI, G ;
SHINODA, T ;
MISHIMA, Y ;
SUZUKI, T .
ISIJ INTERNATIONAL, 1990, 30 (03) :248-254
[4]  
CHU F, 1998, HIGH TEMPERATURE ORD, V522
[5]   Microstructures and mechanical properties of (Ir,Rh)75Nb15Ni10 alloys [J].
Gu, YF ;
Yamabe-Mitarai, Y ;
Nakazawa, S ;
Ro, Y ;
Harada, H .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (04) :1281-1283
[6]   Creep behavior of Ni-added Ir85Nb15 two-phase refractory superalloys at 1800 °C [J].
Gu, YF ;
Yamabe-Mitarai, Y ;
Nakazawa, S ;
Harada, H .
SCRIPTA MATERIALIA, 2002, 46 (02) :137-142
[7]   Properties of the Ir85Nb15 two-phase refractory superalloys with nickel additions [J].
Gu, YF ;
Yamabe-Mitarai, Y ;
Ro, Y ;
Yokokawa, T ;
Harada, H .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (10) :2629-2639
[8]   Microstructure and deformation behavior of Ir-Nb two-phase refractory superalloys for various Nb content [J].
Gu, YF ;
Yamabe-Mitarai, Y ;
Ro, Y ;
Harada, H .
SCRIPTA MATERIALIA, 1999, 40 (11) :1313-1319
[9]   Microstructures and compressive properties of Ir-15Nb refractory superalloy containing nickel [J].
Gu, YF ;
Yamabe-Mitarai, Y ;
Ro, Y ;
Yokokawa, T ;
Harada, H .
SCRIPTA MATERIALIA, 1998, 39 (06) :723-728
[10]   High-temperature compression strengths of precipitation-strengthened ternary Pt-Al-X alloys [J].
Hill, PJ ;
Yamabe-Mitarai, Y ;
Wolff, IM .
SCRIPTA MATERIALIA, 2001, 44 (01) :43-48