Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks

被引:123
作者
Zheng, Mingwen [1 ,2 ]
Li, Lixiang [3 ]
Peng, Haipeng [3 ]
Xiao, Jinghua [1 ,4 ]
Yang, Yixian [3 ]
Zhang, Yanping [2 ]
Zhao, Hui [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Shandong Univ Technol, Sch Sci, Zibo 255000, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 59卷
基金
中国国家自然科学基金;
关键词
Finite-time stability; MFFCNN; Gronwall-Bellman inequality; Linear feedback controller; EXPONENTIAL LAG SYNCHRONIZATION; TURBINE GOVERNING SYSTEM; MITTAG-LEFFLER STABILITY; PROJECTIVE SYNCHRONIZATION; ASSOCIATIVE MEMORY; NONLINEAR DYNAMICS; EXISTENCE;
D O I
10.1016/j.cnsns.2017.11.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 291
页数:20
相关论文
共 50 条
  • [41] New criteria on the finite-time stability of fractional-order BAM neural networks with time delay
    Li, Xuemei
    Liu, Xinge
    Zhang, Shuailei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06) : 4501 - 4517
  • [42] Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays
    You, Xingxing
    Song, Qiankun
    Zhao, Zhenjiang
    NEURAL NETWORKS, 2020, 123 : 248 - 260
  • [43] Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters
    Gu, Yajuan
    Wang, Hu
    Yu, Yongguang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (13): : 8870 - 8898
  • [44] Finite-time projective synchronization of memristor-based neural networks with leakage and time-varying delays
    Qin, Xiaoli
    Wang, Cong
    Li, Lixiang
    Peng, Haipeng
    Yang, Yixian
    Ye, Lu
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 531
  • [45] Generalized Finite-Time Stability and Stabilization for Fractional-Order Memristive Neural Networks
    Zhao, Lirui
    Wu, Huaiqin
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (01) : 11 - 25
  • [46] Finite-time synchronization of fully complex-valued neural networks with fractional-order
    Zheng, Bibo
    Hu, Cheng
    Yu, Juan
    Jiang, Haijun
    NEUROCOMPUTING, 2020, 373 : 70 - 80
  • [47] Finite-time projective synchronization of fractional-order delayed quaternion-valued fuzzy memristive neural networks
    He, Yan
    Zhang, Weiwei
    Zhang, Hai
    Cao, Jinde
    Alsaadi, Fawaz E.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (03): : 401 - 425
  • [48] Finite-time stability criteria for a class of fractional-order neural networks with delay
    Liping Chen
    Cong Liu
    Ranchao Wu
    Yigang He
    Yi Chai
    Neural Computing and Applications, 2016, 27 : 549 - 556
  • [49] Finite-time stability criteria for a class of fractional-order neural networks with delay
    Chen, Liping
    Liu, Cong
    Wu, Ranchao
    He, Yigang
    Chai, Yi
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (03) : 549 - 556
  • [50] Finite-Time Synchronization of Fractional-Order Complex-Variable Dynamic Networks
    Hou, Tianqi
    Yu, Juan
    Hu, Cheng
    Jiang, Haijun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4297 - 4307