A brief survey of tools for genomic regions enrichment analysis

被引:14
作者
Chicco, Davide [1 ]
Jurman, Giuseppe [2 ]
机构
[1] Univ Toronto, Inst Hlth Policy Management & Evaluat, Toronto, ON, Canada
[2] Fdn Bruno Kessler, Data Sci Hlth Unit, Trento, Italy
来源
FRONTIERS IN BIOINFORMATICS | 2022年 / 2卷
关键词
genomic regions enrichment analysis; pathway enrichment analyses; functional annotations; functional enrichment analysis; bioinformatics; HUMAN CELL-TYPES; A WEB SERVER; FUNCTIONAL INTERPRETATION; GENE LISTS; R/BIOCONDUCTOR PACKAGE; GPROFILER; ONTOLOGY; SUITE;
D O I
10.3389/fbinf.2022.968327
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Functional enrichment analysis or pathway enrichment analysis (PEA) is a bioinformatics technique which identifies the most over-represented biological pathways in a list of genes compared to those that would be associated with them by chance. These biological functions are found on bioinformatics annotated databases such as The Gene Ontology or KEGG; the more abundant pathways are identified through statistical techniques such as Fisher's exact test. All PEA tools require a list of genes as input. A few tools, however, read lists of genomic regions as input rather than lists of genes, and first associate these chromosome regions with their corresponding genes. These tools perform a procedure called genomic regions enrichment analysis, which can be useful for detecting the biological pathways related to a set of chromosome regions. In this brief survey, we analyze six tools for genomic regions enrichment analysis (BEHST, g:Profiler g:GOSt, GREAT, LOLA, Poly-Enrich, and ReactomePA), outlining and comparing their main features. Our comparison results indicate that the inclusion of data for regulatory elements, such as ChIP-seq, is common among these tools and could therefore improve the enrichment analysis results.
引用
收藏
页数:7
相关论文
共 43 条
[1]  
Anaconda Inc., 2020, Anaconda Software Distribution
[2]   An atlas of active enhancers across human cell types and tissues [J].
Andersson, Robin ;
Gebhard, Claudia ;
Miguel-Escalada, Irene ;
Hoof, Ilka ;
Bornholdt, Jette ;
Boyd, Mette ;
Chen, Yun ;
Zhao, Xiaobei ;
Schmidl, Christian ;
Suzuki, Takahiro ;
Ntini, Evgenia ;
Arner, Erik ;
Valen, Eivind ;
Li, Kang ;
Schwarzfischer, Lucia ;
Glatz, Dagmar ;
Raithel, Johanna ;
Lilje, Berit ;
Rapin, Nicolas ;
Bagger, Frederik Otzen ;
Jorgensen, Mette ;
Andersen, Peter Refsing ;
Bertin, Nicolas ;
Rackham, Owen ;
Burroughs, A. Maxwell ;
Baillie, J. Kenneth ;
Ishizu, Yuri ;
Shimizu, Yuri ;
Furuhata, Erina ;
Maeda, Shiori ;
Negishi, Yutaka ;
Mungall, Christopher J. ;
Meehan, Terrence F. ;
Lassmann, Timo ;
Itoh, Masayoshi ;
Kawaji, Hideya ;
Kondo, Naoto ;
Kawai, Jun ;
Lennartsson, Andreas ;
Daub, Carsten O. ;
Heutink, Peter ;
Hume, David A. ;
Jensen, Torben Heick ;
Suzuki, Harukazu ;
Hayashizaki, Yoshihide ;
Mueller, Ferenc ;
Forrest, Alistair R. R. ;
Carninci, Piero ;
Rehli, Michael ;
Sandelin, Albin .
NATURE, 2014, 507 (7493) :455-+
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Redefine statistical significance [J].
Benjamin, Daniel J. ;
Berger, James O. ;
Johannesson, Magnus ;
Nosek, Brian A. ;
Wagenmakers, E. -J. ;
Berk, Richard ;
Bollen, Kenneth A. ;
Brembs, Bjoern ;
Brown, Lawrence ;
Camerer, Colin ;
Cesarini, David ;
Chambers, Christopher D. ;
Clyde, Merlise ;
Cook, Thomas D. ;
De Boeck, Paul ;
Dienes, Zoltan ;
Dreber, Anna ;
Easwaran, Kenny ;
Efferson, Charles ;
Fehr, Ernst ;
Fidler, Fiona ;
Field, Andy P. ;
Forster, Malcolm ;
George, Edward I. ;
Gonzalez, Richard ;
Goodman, Steven ;
Green, Edwin ;
Green, Donald P. ;
Greenwald, Anthony ;
Hadfield, Jarrod D. ;
Hedges, Larry V. ;
Held, Leonhard ;
Ho, Teck Hua ;
Hoijtink, Herbert ;
Hruschka, Daniel J. ;
Imai, Kosuke ;
Imbens, Guido ;
Ioannidis, John P. A. ;
Jeon, Minjeong ;
Jones, James Holland ;
Kirchler, Michael ;
Laibson, David ;
List, John ;
Little, Roderick ;
Lupia, Arthur ;
Machery, Edouard ;
Maxwell, Scott E. ;
McCarthy, Michael ;
Moore, Don ;
Morgan, Stephen L. .
NATURE HUMAN BEHAVIOUR, 2018, 2 (01) :6-10
[5]   Broad-Enrich: functional interpretation of large sets of broad genomic regions [J].
Cavalcante, Raymond G. ;
Lee, Chee ;
Welch, Ryan P. ;
Patil, Snehal ;
Weymouth, Terry ;
Scott, Laura J. ;
Sartor, Maureen A. .
BIOINFORMATICS, 2014, 30 (17) :I393-I400
[6]  
Chicco D., 2019, bioRxiv, V168427, P1, DOI [10.1101/168427, DOI 10.1101/168427]
[7]   Nine quick tips for pathway enrichment analysis [J].
Chicco, Davide ;
Agapito, Giuseppe .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (08)
[8]   Software Suite for Gene and Protein Annotation Prediction and Similarity Search [J].
Chicco, Davide ;
Masseroli, Marco .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (04) :837-843
[9]   The reactome pathway knowledgebase 2022 [J].
Gillespie, Marc ;
Jassal, Bijay ;
Stephan, Ralf ;
Milacic, Marija ;
Rothfels, Karen ;
Senff-Ribeiro, Andrea ;
Griss, Johannes ;
Sevilla, Cristoffer ;
Matthews, Lisa ;
Gong, Chuqiao ;
Deng, Chuan ;
Varusai, Thawfeek ;
Ragueneau, Eliot ;
Haider, Yusra ;
May, Bruce ;
Shamovsky, Veronica ;
Weiser, Joel ;
Brunson, Timothy ;
Sanati, Nasim ;
Beckman, Liam ;
Shao, Xiang ;
Fabregat, Antonio ;
Sidiropoulos, Konstantinos ;
Murillo, Julieth ;
Viteri, Guilherme ;
Cook, Justin ;
Shorser, Solomon ;
Bader, Gary ;
Demir, Emek ;
Sander, Chris ;
Haw, Robin ;
Wu, Guanming ;
Stein, Lincoln ;
Hermjakob, Henning ;
D'Eustachio, Peter .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D687-D692
[10]   Bioconda: sustainable and comprehensive software distribution for the life sciences [J].
Gruening, Bjoern ;
Dale, Ryan ;
Sjoedin, Andreas ;
Chapman, Brad A. ;
Rowe, Jillian ;
Tomkins-Tinch, Christopher H. ;
Valieris, Renan ;
Koester, Johannes ;
Team, Bioconda .
NATURE METHODS, 2018, 15 (07) :475-476