Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes

被引:122
作者
Noh, Kyungjoo [1 ,2 ]
Albert, Victor V. [1 ,2 ,3 ,4 ]
Jiang, Liang [2 ,5 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[2] Yale Univ, Yale Quantum Inst, New Haven, CT 06520 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[5] Yale Univ, Dept Appl Phys & Phys, New Haven, CT 06511 USA
关键词
Communication channels; channel capacity; error correction codes; quantum entanglement; optimization; SPHERE PACKING PROBLEM; STATES; COMMUNICATION; ENTANGLEMENT; COMPUTATION; SCHEME; QUBIT;
D O I
10.1109/TIT.2018.2873764
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gaussian thermal loss channels are of particular importance to quantum communication theory since they model realistic optical communication channels. Except for special cases, the quantum capacity of Gaussian thermal loss channels is not yet quantified completely. In this paper, we provide improved upper bounds of the Gaussian thermal loss channel capacity, both in energy-constrained and unconstrained scenarios. We briefly review Gottesman-Kitaev-Preskill (GKP) codes and discuss their experimental implementation. We then prove, in the energy-unconstrained case, that a family of GKP codes achieves the quantum capacity of Gaussian thermal loss channels up to at most a constant gap from the improved upper bound. In the energy-constrained case, we formulate a biconvex encoding and decoding optimization problem to maximize entanglement fidelity. Then, we solve the biconvex optimization heuristically by an alternating semi-definite programming method and report that, starting from Haar random initial codes, our numerical optimization yields a hexagonal GKP code as an optimal encoding in a practically relevant regime.
引用
收藏
页码:2563 / 2582
页数:20
相关论文
共 91 条
[1]  
Albert V. V., 2018, PAIR CAT CODES AUTON
[2]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[3]   Reversing quantum dynamics with near-optimal quantum and classical fidelity [J].
Barnum, H ;
Knill, E .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2097-2106
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Quantum error correction against photon loss using NOON states [J].
Bergmann, Marcel ;
van Loock, Peter .
PHYSICAL REVIEW A, 2016, 94 (01)
[7]   Error correction for continuous quantum variables [J].
Braunstein, SL .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4084-4087
[8]   ON THE PERIOD MATRIX OF A RIEMANN SURFACE OF LARGE GENUS (WITH AN APPENDIX BY CONWAY,J.H. AND SLOANE,N.J.A.) [J].
BUSER, P ;
SARNAK, P .
INVENTIONES MATHEMATICAE, 1994, 117 (01) :27-56
[9]   One-mode bosonic Gaussian channels: a full weak-degradability classification [J].
Caruso, F. ;
Giovannetti, V. ;
Holevo, A. S. .
NEW JOURNAL OF PHYSICS, 2006, 8
[10]   Multi-mode bosonic Gaussian channels [J].
Caruso, F. ;
Eisert, J. ;
Giovannetti, V. ;
Holevo, A. S. .
NEW JOURNAL OF PHYSICS, 2008, 10