An exactly solvable supersymmetric spin chain of BCN type

被引:21
作者
Barba, J. C. [1 ]
Finkel, F. [1 ]
Gonzalez-Lopez, A. [1 ]
Rodridguez, M. A. [1 ]
机构
[1] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
关键词
Exactly solvable spin chains; Supersymmetry; Quantum chaos; INVERSE-SQUARE EXCHANGE; QUADRATIC PAIR POTENTIALS; HALDANE-SHASTRY TYPE; T-J MODEL; INTEGRABLE SYSTEMS; PARTITION-FUNCTION; EXACT SPECTRUM; ONE DIMENSION; BODY PROBLEM; PARTICLES;
D O I
10.1016/j.nuclphysb.2008.08.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a new exactly solvable supersymmetric spin chain related to the BCN extended root system, which includes as a particular case the BCN version of the Polychronakos-Frahm spin chain. We also introduce a supersymmetric spin dynamical model of Calogero type which yields the new chain in the large coupling limit. This connection is exploited to derive two different closed-form expressions for the chain's partition function by means of Polychronakos's freezing trick. We establish a boson-fermion duality relation for the new chain's spectrum, which is in fact valid for a large class of (not necessarily integrable) spin chains of BCN type. The exact expressions for the partition function are also used to study the chain's spectrum as a whole, showing that the level density is normally distributed even for a moderately large number of particles. We also determine a simple analytic approximation to the distribution of normalized spacings between consecutive levels which fits the numerical data with remarkable accuracy. Our results provide further evidence that spin chains of Haldane-Shastry type are exceptional integrable models, in the sense that their spacings distribution is not Poissonian, as posited by the Berry-Tabor conjecture for "generic" quantum integrable systems. (C) 2008 Elsevier B.V. All fights reserved.
引用
收藏
页码:684 / 714
页数:31
相关论文
共 39 条
[1]   Electron addition spectrum in the supersymmetric t-J model with inverse-square interaction [J].
Arikawa, M ;
Saiga, Y ;
Kuramoto, Y .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3096-3099
[2]   Exact spin dynamics of the 1/r2 supersymmetric t-J model in a magnetic field [J].
Arikawa, Mitsuhiro ;
Saiga, Yasuhiro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (34) :10603-10621
[3]   The Berry-Tabor conjecture for spin chains of Haldane-Shastry type [J].
Barba, J. C. ;
Finkel, F. ;
Gonzalez-Lopez, A. ;
Rodriguez, M. A. .
EPL, 2008, 83 (02)
[4]   Polychronakos-Frahm spin chain of BCN type and the Berry-Tabor conjecture [J].
Barba, J. C. ;
Finkel, F. ;
Gonzalez-Lopez, A. ;
Rodriguez, M. A. .
PHYSICAL REVIEW B, 2008, 77 (21)
[5]   Low energy properties of the SU(m|n) supersymmetric Haldane-Shastry spin chain [J].
Basu-Mallick, B. ;
Bondyopadhaya, Nilanjan ;
Sen, Diptiman .
NUCLEAR PHYSICS B, 2008, 795 (03) :596-622
[6]   Boson-fermion duality in SU(m|n) supersymmetric Haldane-Shastry spin chain [J].
Basu-Mallick, B. ;
Bondyopadhaya, Nilanjan ;
Hikami, Kazuhiro ;
Sen, Diptiman .
NUCLEAR PHYSICS B, 2007, 782 (03) :276-295
[7]   Exact partition function of SU (m|n) supersymmetric Haldane-Shastry spin chain [J].
Basu-Mallick, B. ;
Bondyopadhaya, Nilanjan .
NUCLEAR PHYSICS B, 2006, 757 (03) :280-302
[8]   Exact spectrum and partition function of SU(m|n) supersymmetric Polychronakos model [J].
Basu-Mallick, B ;
Ujino, H ;
Wadati, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (10) :3219-3226
[9]   YANG-BAXTER EQUATION IN LONG-RANGE INTERACTING SYSTEMS [J].
BERNARD, D ;
GAUDIN, M ;
HALDANE, FDM ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5219-5236
[10]   EXACT SOLUTION OF LONG-RANGE INTERACTING SPIN CHAINS WITH BOUNDARIES [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
EUROPHYSICS LETTERS, 1995, 30 (05) :301-306