An Investigation into Using Temporary Immersion Bioreactors to Micropropagate Moringa oleifera Lam. Callus, Roots, and Shoots

被引:1
作者
Coetser, Elmien [1 ]
du Toit, Elsa S. [1 ]
Prinsloo, Gerhard [2 ]
机构
[1] Univ Pretoria, Fac Nat & Agr Sci, Dept Plant & Soil Sci, ZA-0002 Pretoria, South Africa
[2] Univ South Africa, Coll Agr & Environm Sci, Dept Agr & Anim Hlth, ZA-1710 Johannesburg, South Africa
来源
AGRONOMY-BASEL | 2022年 / 12卷 / 11期
基金
新加坡国家研究基金会;
关键词
microcuttings; moringa; temporary immersion bioreactors; in vitro shooting; plant growth regulators; MICRO-CLONING; SYSTEM; PROPAGATION; CULTURE; GROWTH; PLANT;
D O I
10.3390/agronomy12112672
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Moringa oleifera Lam., a tree naturally grown in the tropics, is becoming increasingly popular as an industrial crop due to its multitude of useful attributes. Therefore, this study tested the effect of temporary immersion system (TIS) bioreactors for mass micropropagation of Moringa oleifera Lam. callus, roots, and shoots. TIS are tissue culture systems that make use of timers to periodically immerse and drain plant cultures in a liquid nutrient medium instead of using solidified media. In initial studies, Moringa oleifera seeds were germinated in vitro, and in vitro seedling leaflets were then used as explant material for callus production on the pre-culturing media. Two experiments were conducted to improve the protocol for TIS bioreactor production. The first experiment investigated the effect of 6-benzylaminopurine (BA) and kinetin, whereas experiment 2 was conducted to improve shooting production. For the first experiment, leaf material was cultured onto a solidified medium consisting of half-strength Murashige and Skoog (MS) basal salts and 0.5 ppm 1-naphthaleneacetic acid (NAA) to initiate callus production before splitting it between solidified media and bioreactors for shooting. The shooting media consisted of full-strength MS basal salts and different treatments of kinetin and BA. A significant increase in callus production was observed with the use of TIS bioreactors, compared to solidified media, whereas root production had a highly significant interaction effect between the media and the cytokinin treatments. With shoot proliferation in mind, experiment 2 was performed, where microcuttings from in vitro-grown seedlings were excised and cultured onto a solidified MS medium, consisting of a control (0 ppm BA) and two different concentrations of 6-benzylaminopurine (BA) (0.1 ppm BA and 0.2 ppm BA) in the pre-culturing phase. Microcuttings were again excised after two weeks and transferred to the shooting media containing 0.1 ppm BA in TIS bioreactors and semi-solidified medium. Results showed TIS bioreactors to be effective in increasing both the amount and length of shoots produced. Shoot and callus fresh weights were also higher in explants cultured in TIS bioreactors. The results of this study also suggest M. oleifera sensitivities to plant growth regulators (PGRs). In conclusion, this study successfully produced callus, roots, and shoots in both the solidified media and TIS bioreactors, emphasizing the prospect of using TIS bioreactors for mass micropropagation of M. oleifera callus, roots, and shoots.
引用
收藏
页数:14
相关论文
共 23 条
[1]   Evaluation of a New Temporary Immersion Bioreactor System for Micropropagation of Cultivars of Eucalyptus, Birch and Fir [J].
Businge, Edward ;
Trifonova, Adelina ;
Schneider, Carolin ;
Roedel, Philipp ;
Egertsdotter, Ulrika .
FORESTS, 2017, 8 (06)
[2]   Temporary immersion bioreactors for clonal production of Moringa oleifera tissues [J].
Coetser, E. ;
du Toit, E. S. ;
Prinsloo, G. .
II INTERNATIONAL SYMPOSIUM ON MORINGA, 2021, 1306 :13-18
[3]   Bioreactors and molecular analysis in berry crop micropropagation - A review [J].
Debnath, Samir C. .
CANADIAN JOURNAL OF PLANT SCIENCE, 2011, 91 (01) :147-157
[4]   Pineapple (Ananas comosus L-Merr) micropropagation in temporary immersion systems [J].
Escalona, M ;
Lorenzo, JC ;
González, B ;
Daquinta, M ;
González, JL ;
Desjardins, Y ;
Borroto, CG .
PLANT CELL REPORTS, 1999, 18 (09) :743-748
[5]   Temporary immersion systems in plant micropropagation [J].
Etienne, H ;
Berthouly, M .
PLANT CELL TISSUE AND ORGAN CULTURE, 2002, 69 (03) :215-231
[6]   Moringa Oleifera-Establishment and Multiplication of Different Ecotypes In Vitro [J].
Foerster, Nadja ;
Mewis, Inga ;
Ulrichs, Christian .
GESUNDE PFLANZEN, 2013, 65 (01) :21-31
[7]   Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots [J].
Jeong, CS ;
Chakrabarty, D ;
Hahn, EJ ;
Lee, HL ;
Paek, KY .
BIOCHEMICAL ENGINEERING JOURNAL, 2006, 27 (03) :252-263
[8]   An efficient temporary immersion system for micropropagation of hybrid hazelnut [J].
Latawa, Jyoti ;
Shukla, Mukund R. ;
Saxena, Praveen K. .
BOTANY, 2016, 94 (01) :1-8
[9]   Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview [J].
Leone, Alessandro ;
Spada, Alberto ;
Battezzati, Alberto ;
Schiraldi, Alberto ;
Aristil, Junior ;
Bertoli, Simona .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (06) :12791-12835
[10]  
Lyam PT., 2012, J BIOL LIFE SCI, V3, P66, DOI [10.5296/jbls.v3i1.1156, DOI 10.5296/JBLS.V3I1.1156]