Identities for the associator in alternative algebras

被引:8
作者
Bremner, M
Hentzel, I
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jsco.2001.0510
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The associator is an alternating trilinear product for any alternative algebra. We study this trilinear product in three related algebras: the associator in a free alternative algebra, the associator in the Cayley algebra, and the ternary cross product on four-dimensional space. This last example is isomorphic to the ternary subalgebra of the Cayley algebra which is spanned by the non-quaternion basis elements. We determine the identities of degree less than or equal to 7 satisfied by these three ternary algebras. We discover two new identities in degree 7 satisfied by the associator in every alternative algebra and five new identities in degree 7 satisfied by the associator in the Cayley algebra. For the ternary cross product we recover the ternary derivation identity in degree 5 introduced by Filippov. (C) 2002 Elsevier Science Ltd.
引用
收藏
页码:255 / 273
页数:19
相关论文
共 23 条
[1]  
Baranovic T. M., 1975, RUSS MATH SURV, V30, P61
[2]   Identities for generalized Lie and Jordan products on totally associative triple systems [J].
Bremner, M ;
Hentzel, I .
JOURNAL OF ALGEBRA, 2000, 231 (01) :387-405
[3]   Identities for the ternary commutator [J].
Bremner, M .
JOURNAL OF ALGEBRA, 1998, 206 (02) :615-623
[4]   Varieties of anticommutative n-ary algebras [J].
Bremner, M .
JOURNAL OF ALGEBRA, 1997, 191 (01) :76-88
[5]  
FILIPPOV VT, 1985, SIBERIAN MATH J+, V26, P879
[6]  
GNEDBAYE AV, 1995, CR ACAD SCI I-MATH, V321, P147
[7]  
GNEDBAYE AV, 1995, THESIS U L PASTEUR S
[8]  
Gnedbaye AV, 1997, CONT MATH, V202, P83
[9]   ON LIE K-ALGEBRAS [J].
HANLON, P ;
WACHS, M .
ADVANCES IN MATHEMATICS, 1995, 113 (02) :206-236
[10]  
HENTZEL I, 1977, COMPUTERS NONASSOCIA