VINOGRADOV'S MEAN VALUE THEOREM VIA EFFICIENT CONGRUENCING, II

被引:48
作者
Wooley, Trevor D. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
WARING PROBLEM; SUMS;
D O I
10.1215/00127094-2079905
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the efficient congruencing method to estimate Vinogradov's integral for moments of order 2s, with 1 <= s <= k(2) - 1. Thereby, we show that quasi-diagonal behavior holds when s = o(k(2)), and we obtain near-optimal estimates for 1 <= s <= 1/4k(2) + k and optimal estimates for s >= k(2) - 1. In this way we come halfway to proving the main conjecture in two different directions. There are consequences for estimates of Weyl type and in several allied applications. Thus, for example, the anticipated asymptotic formula in Waring's problem is established for sums of s kth powers of natural numbers whenever s >= 2k(2) - 2k - 8 (k >= 6).
引用
收藏
页码:673 / 730
页数:58
相关论文
共 21 条
  • [1] ARKHIPOV G. I., 1978, IZV AKAD NAUK SSSR M, V42, P751
  • [2] Arkhipov GI, 2004, DEGRUYTER EXPOS MATH, V39, P1, DOI 10.1515/9783110197983
  • [3] THE ASYMPTOTIC FORMULA IN WARINGS PROBLEM
    BOKLAN, KD
    [J]. MATHEMATIKA, 1994, 41 (82) : 329 - 347
  • [4] ON WEYL SUMS FOR SMALLER EXPONENTS
    Boklan, Kent D.
    Wooley, Trevor D.
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (01) : 91 - 107
  • [5] h-FOLD SUMS FROM A SET WITH FEW PRODUCTS
    Croot, Ernie
    Hart, Derrick
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 505 - 519
  • [6] Ford K.B., 1995, International Mathematics Research Notices, V3, P155, DOI DOI 10.1155/S1073792895000122
  • [7] HEATHBROWN DR, 1988, J LOND MATH SOC, V38, P216
  • [8] HUA L.-K., 1965, TRANSL MATH MONOGR, V13
  • [9] On the Bombieri-Korobov estimate for Weyl sums
    Parsell, Scott T.
    [J]. ACTA ARITHMETICA, 2009, 138 (04) : 363 - 372
  • [10] ROBERT O., 2000, PUBL I MATH-BEOGRAD, V67, P14