Parameter Estimation of Bioprocesses via Parallel Particle Swarm Optimization

被引:0
|
作者
Sendrescu, Dorin [1 ]
Petre, Emil [1 ]
Bobasu, Eugen [1 ]
Roman, Monica [1 ]
机构
[1] Univ Craiova, Dept Automat & Elect, Craiova, Romania
来源
2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC) | 2016年
关键词
Parameter estimation; Bioprocesses; Parallel Particle Swarm Optimization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling of biotechnological systems is an important research area. The most challenging approach is to build non-linear state space models for these systems. In this work the parameters of a bacterial growth bioprocess are estimated using prediction error method. Prediction error methods are widely used in parameter estimation both for linear and nonlinear models and consist in minimization of the distance between measured and modeled data in a suitable norm. Because these problems are solved using numerical algorithms that are time consuming, in this paper a parallel particle swarm optimization technique is used in order to numerically solve the minimization problem. The algorithm is implemented on a multicore processor and the performances of this approach are presented by numerical simulations.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 50 条
  • [1] Accelerating Parameter Estimation for Photovoltaic Models via Parallel Particle Swarm Optimization
    Ma, Jieming
    Man, Ka Lok
    Ting, T. O.
    Zhang, Nan
    Guan, Sheng-Uei
    Wong, Prudence W. H.
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 175 - 178
  • [2] Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm
    Ma, Jieming
    Man, Ka Lok
    Guan, Sheng-Uei
    Ting, T. O.
    Wong, Prudence W. H.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (03) : 343 - 352
  • [3] Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU
    Gao, Shuhua
    Xiang, Cheng
    Lee, Tong Heng
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [4] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [5] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [6] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [7] Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization
    Xu, Xing
    Li, Yuanxiang
    Wu, Yu
    Du, Xin
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 679 - 686
  • [8] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) : 1785 - 1799
  • [9] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03): : 102 - 111
  • [10] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799