Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity

被引:138
作者
Alves, Claudianor O. [1 ]
Souto, Marco A. S. [1 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat & Estat, BR-58429900 Campina Grande, PB, Brazil
关键词
Superlinear problem; Positive solution; Variational methods;
D O I
10.1016/j.jde.2012.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the existence of positive ground state solution for the following class of elliptic equations -Delta u + V(x)u = K (x) f (u) in R-N, where N >= 3, V, K are nonnegative continuous functions and f is a continuous function with a quasicritical growth. Here, we prove a Hardy-type inequality and use it together with variational method to get a ground state solution. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1977 / 1991
页数:15
相关论文
共 14 条
  • [1] Existence of solution for two classes of elliptic problems in RN with zero mass
    Alves, Claudianor .
    Souto, Marco A. S.
    Montenegro, Marcelo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5735 - 5750
  • [2] Existence of solutions for a class of elliptic equations in RN with vanishing potentials
    Alves, Claudianor O.
    Souto, Marco A. S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5555 - 5568
  • [3] Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
  • [4] Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
  • [5] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [6] Sum of weighted Lebesgue spaces and nonlinear elliptic equations
    Badiale, Marino
    Pisani, Lorenzo
    Rolando, Sergio
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (04): : 369 - 405
  • [7] Benci V, 2006, PROG NONLINEAR DIFFE, V66, P53
  • [8] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [9] Groundstates for the nonlinear Schrodinger equation with potential vanishing at infinity
    Bonheure, Denis
    Van Schaftingen, Jean
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (02) : 273 - 301
  • [10] Cerami G., 1978, RC I LOMB SCI LETT, V112, P332