Ranked Sparse Signal Support Detection

被引:4
作者
Fletcher, Alyson K. [1 ]
Rangan, Sundeep [2 ]
Goyal, Vivek K. [3 ]
机构
[1] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA
[2] Polytech Inst New York, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[3] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Compressed sensing; convex optimization; lasso; maximum likelihood estimation; orthogonal matching pursuit; random matrices; sparse Bayesian learning; sparsity; thresholding; INFORMATION-THEORETIC LIMITS; RECOVERY; PURSUIT;
D O I
10.1109/TSP.2012.2208957
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the problem of detecting the support (sparsity pattern) of a sparse vector from random noisy measurements. Conditional power of a component of the sparse vector is defined as the energy conditioned on the component being nonzero. Analysis of a simplified version of orthogonal matching pursuit (OMP) called sequential OMP (SequOMP) demonstrates the importance of knowledge of the rankings of conditional powers. When the simple SequOMP algorithm is applied to components in nonincreasing order of conditional power, the detrimental effect of dynamic range on thresholding performance is eliminated. Furthermore, under the most favorable conditional powers, the performance of SequOMP approaches maximum likelihood performance at high signal-to-noise ratio.
引用
收藏
页码:5919 / 5931
页数:13
相关论文
共 45 条
[1]   Iterative power control for imperfect successive interference cancellation [J].
Agrawal, A ;
Andrews, JG ;
Cioffi, JM ;
Meng, T .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2005, 4 (03) :878-884
[2]   Shannon-Theoretic Limits on Noisy Compressive Sampling [J].
Akcakaya, Mehmet ;
Tarokh, Vahid .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) :492-504
[3]  
[Anonymous], 2010, GEN APPROXIMATE MESS
[4]  
[Anonymous], IEEE T SIGNAL UNPUB
[5]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[6]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[7]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[8]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[9]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[10]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61