Loss of artemisinin produced by Artemisia annua L. to the soil environment

被引:21
|
作者
Jessing, Karina K. [1 ]
Cedergreen, Nina [1 ]
Mayer, Philipp [1 ,2 ]
Libous-Bailey, Lynn [3 ]
Strobel, Bjarne W. [1 ]
Rimando, Agnes [4 ]
Duke, Stephen O. [4 ]
机构
[1] Univ Copenhagen, Dept Basic Sci & Environm, DK-1871 Frederiksberg C, Denmark
[2] Aarhus Univ, Dept Environm Sci, DK-4000 Roskilde, Denmark
[3] USDA, Crop Protect Syst Res Unit, Stoneville, MS 38776 USA
[4] Univ Mississippi, USDA, Nat Prod Utilizat Res, University, MS 38677 USA
关键词
Production; Yield; Environment; In situ silicone microextraction; SECONDARY METABOLITES; ANTIMALARIAL-DRUG; TISSUE-CULTURES; BIOSYNTHESIS; DEGRADATION; INHIBITION; PARTHENIUM; TRICHOMES;
D O I
10.1016/j.indcrop.2012.06.033
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Artemisia annua L synthesizes and accumulates the secondary metabolite artemisinin, a compound with antimalarial properties. As cultivation of the plant is still the only cost effective source of artemisinin, the production takes place in monocultures of A. annua. Artemisinin is known to have insecticidal and herbicidal effects, and also of being toxic to A. annua. Knowing the magnitude of the different routes of loss of artemisinin from A. annua to the soil environment makes it possible to reduce the risk of decrease in yield as well as reducing the impact on soil organisms including plants, and reducing the risk of leaching. The largest contributor (86-108%) of artemisinin loss to the soil environment was found to be from dead leaves. In the case with A. annua production, the risks can hence be limited by paying attention to the harvest and drying process, where risk of loss of plant material to the surrounding environment is the largest. Artemisinin is also lost from A. annua by rain runoff (<0.5%) and root excretion, but to a minor degree. The in situ silicone tube microextraction method was here successfully applied for the first time to monitor artemisinin from roots in an A. annua soil-plant system. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 140
页数:9
相关论文
共 50 条
  • [1] Potential Ecological Roles of Artemisinin Produced by Artemisia annua L.
    Karina Knudsmark Jessing
    Stephen O. Duke
    Nina Cedergreeen
    Journal of Chemical Ecology, 2014, 40 : 100 - 117
  • [2] Potential Ecological Roles of Artemisinin Produced by Artemisia annua L.
    Jessing, Karina Knudsmark
    Duke, Stephen O.
    Cedergreeen, Nina
    JOURNAL OF CHEMICAL ECOLOGY, 2014, 40 (02) : 100 - 117
  • [3] Overproduction of artemisinin in tetraploid Artemisia annua L.
    Banyai, Waleerat
    Sangthong, Ratchada
    Karaket, Netiya
    Inthima, Phithak
    Mii, Masahiro
    Supaibulwatana, Kanyaratt
    PLANT BIOTECHNOLOGY, 2010, 27 (05) : 427 - 433
  • [4] Metabolic engineering of artemisinin biosynthesis in Artemisia annua L.
    Liu, Benye
    Wang, Hong
    Du, Zhigao
    Li, Guofeng
    Ye, Hechun
    PLANT CELL REPORTS, 2011, 30 (05) : 689 - 694
  • [5] Metabolic engineering of artemisinin biosynthesis in Artemisia annua L.
    Benye Liu
    Hong Wang
    Zhigao Du
    Guofeng Li
    Hechun Ye
    Plant Cell Reports, 2011, 30 : 689 - 694
  • [6] Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L.
    Shen, Qian
    Yan, Tingxiang
    Fu, Xueqing
    Tang, Kexuan
    SCIENCE BULLETIN, 2016, 61 (01) : 18 - 25
  • [7] Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L.
    Qian Shen
    Tingxiang Yan
    Xueqing Fu
    Kexuan Tang
    ScienceBulletin, 2016, 61 (01) : 18 - 25
  • [8] Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L.
    Khanhvan T. Nguyen
    Patrick R. Arsenault
    Pamela J. Weathers
    In Vitro Cellular & Developmental Biology - Plant, 2011, 47 : 329 - 338
  • [9] Transgenic approach to increase artemisinin content in Artemisia annua L.
    Tang, Kexuan
    Shen, Qian
    Yan, Tingxiang
    Fu, Xueqing
    PLANT CELL REPORTS, 2014, 33 (04) : 605 - 615
  • [10] Salicylic acid activates artemisinin biosynthesis in Artemisia annua L.
    Gao-Bin Pu
    Dong-Ming Ma
    Jian-Lin Chen
    Lan-Qing Ma
    Hong Wang
    Guo-Feng Li
    He-Chun Ye
    Ben-Ye Liu
    Plant Cell Reports, 2009, 28 : 1127 - 1135